• Title/Summary/Keyword: prediction equation of concrete

Search Result 221, Processing Time 0.022 seconds

Analytical model for transfer length prediction of 13 mm prestressing strand

  • Marti-Vargas, J.R.;Arbelaez, C.A.;Serna-Ros, P.;Navarro-Gregori, J.;Pallares-Rubio, L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.211-229
    • /
    • 2007
  • An experimental investigation to determine the transfer length of a seven-wire prestressing strand in different concretes is presented in this paper. A testing technique based on the analysis of bond behaviour by means of measuring the force supported by the prestressing strand on a series of specimens with different embedment lengths has been used. An analytical bond model to calculate the transfer length from an inelastic bond stress distribution along the transfer length has been obtained. A relationship between the plastic bond stress for transfer length and the concrete compressive strength at the time of prestress transfer has been found. An equation to predict the average and both the lower bound and the upper bound values of transfer length is proposed. The experimental results have not only been compared with the theoretical prediction from proposed equations in the literature, but also with experimental results obtained by several researchers.

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

Bond Strength of Near Surface-Mounted FRP Plate in RC Member (콘크리트 내에 표면매입 보강된 FRP 판의 부착강도)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.415-422
    • /
    • 2012
  • This paper analyzed seventy eight previous test results to evaluate bond strength of Near Surface-Mounted (NSM) FRP and prediction formulas previously proposed by researchers. The results showed that the most reliable bond strength prediction was the one proposed by Seracino, who considered the shape coefficient (ratio of width-thickness) and stiffness of FRP. However, the equation tended to underestimate the bond strength, especially serious when FRP bond length was relatively short, because the equation did not consider the effect of bond length. Based on the analysis of previous test results, the relation between bond length and bond strength and the group effect due to close proximity of FRPs were determined. Based on the findings, the Seracino's formula was modified and it's applicability was evaluated. The result showed that the suggested formula can be used effectively to predict the bond strength of NSM FRP.

Prediction of the Rheological Properties of Cement Mortar Applying Multiscale Techniques (멀티스케일 기법을 적용한 시멘트 모르타르의 유변특성 예측)

  • Eun-Seok Choi;Jun-Woo Lee;Su-Tae Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.69-76
    • /
    • 2024
  • The rheological properties of fresh concrete significantly influence its manufacturing and performance. However, the diversification of newly developed mixtures and manufacturing techniques has made it challenging to accurately predict these properties using traditional empirical methods. This study introduces a multiscale rheological property prediction model designed to quantitatively anticipate the rheological characteristics from nano-scale interparticle interactions, such as those among cement particles, to micro-scale behaviors, such as those involving fine aggregates. The Yield Stress Model (YODEL), the Chateau-Ovarlez-Trung equation, and the Krieger-Dougherty equation were utilized to predict the yield stress for cement paste and mortar, as well as the plastic viscosity. Initially, predictions were made for the paste scale, using the water-cement ratio (W/C) of the cement paste. These predictions then served as a basis for further forecasting of the rheological properties at the mortar scale, incorporating the same W/C and adding the cement-sand volume ratio (C/S). Lastly, the practicality of the predictive model was assessed by comparing the forecasted outcomes to experimental results obtained from rotational rheometer.

A Study on Evaluating the Compressive Strength Development of Concrete Mixed with Non-sintered Hwangto Admixture by an Ultrasonic Method (비소성 황토 결합재를 혼합한 콘크리트의 강도 발현 평가를 위한 초음파 속도법의 검토)

  • Kim, Jeong-Wook;Kim, Won-Chang;Kim, Gyu-Yong;Lee, Tae-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • In this study, the mechanical properties of concrete mixed with non-sintered hwangto(NHT) as an alternate material for cement were evaluated, and the compressive strength prediction equation of concrete based on ultrasonic pulse velocity analysis was proposed. Cement replacement rates for mixed NHT were set to 0, 15, and 30%, and design compressive strength was set to 30 and 45MPa to evaluate the effect on the amount of cement and NHT powder. The mechanical properties items analyzed were compressive strength, ultrasonic pulse velocity, and elastic modulus, and were measured on days 1, 3, 7, and 28. As the replacement rate of NHT increased, the mechanical properties tended to decrease. In addition, as a result of analyzing the correlation between compressive strength and ultrasonic pulse velocity, the correlation coefficient(R2) showed a high relationship(R2=0.95) on concrete mixed with NHT.

An Experimental Study on the Evaluation of Adiabatic Temperature Rise of Concrete (콘크리트의 단열온도 상승량의 정량화에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.186-196
    • /
    • 1995
  • In this study, parameters such as unit cement weight and placing temperature which influence on temperature rise and temperature rise velocity are investigated through adiabatic tests for the domestic ordinary portland cement(0PC). Adiabatic temperature rise suggested by Korean Concrete Spec. are compared with that from this experimental results. As a result of this study, adiabatic temperature rise of OPC suggested spec. is overestimated. Also it is shown that 2-parameter equation suggested in the spec. overestimate heat evolution at early age and reasonable prediction of heat evolution can be obtained by using 3-parameter equation. Results of numerical analysis by using the input data from this test and the suggested values from spec. shows similar temperatures. However thermal stresses pridicted using input value from spec. may result 20% more than that from this test in case of externally restricted state.

Ultimate Strength of Composite Beams with Unreinforced Web Opening (유공 합성보의 강도식에 관한 연구)

  • 김창호;박종원;김희구
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.101-110
    • /
    • 2000
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opning is proposed through shear behavioral tests. In this method, the slab shear contribution at the opening is calculated as the smaller value of the pullout capacity of shear connector at the high moment end and the one way shear capacity of slab. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical methods. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

Control of Crack Induced by the Temperature Difference During Hydration (수화발열시 내외부 온도차가 유발하는 균열의 제어)

  • Jeon, Se-Jin;Choi, Myoung-Sung;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.681-684
    • /
    • 2006
  • Control of the temperature difference across a section is an effective way to minimize the hydration-heat-induced cracks for the structures where internal restraint is dominant. However, surface temperature may not be easily measured in situ due to the difficulty in maintaining the correct location during casting. A prediction equation for the temperature difference is proposed which can be applied without directly measuring the surface temperature if the curing condition and ambient temperature are known. Some strategies to control the temperature difference are revisited and a reasonable range of the temperature difference to minimize the crack is discussed.

  • PDF

Development of Deterioration Prediction Model and Reliability Model for the Cyclic Freeze-Thaw of Concrete Structures (콘크리트구조물의 반복적 동결융해에 대한 수치 해석적 열화 예측 및 신뢰성 모델 개발)

  • Cho, Tae-Jun;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2008
  • The initiation and growth processes of cyclic ice body in porous systems are affected by the thermo-physical and mass transport properties, as well as gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and the deterioration by the accumulated damages are hard to identify in tests. In order to predict the accumulated damages by cyclic freeze-thaw, a regression analysis by the response surface method (RSM) is used. The important parameters for cyclic freeze-thawdeterioration of concrete structures, such as water to cement ratio, entrained air pores, and the number of cycles of freezing and thawing, are used to compose the limit state function. The regression equation fitted to the important deterioration criteria, such as accumulated plastic deformation, relative dynamic modulus, or equivalent plastic deformations, were used as the probabilistic evaluations of performance for the degraded structural resistance. The predicted results of relative dynamic modulus and residual strains after 300 cycles of freeze-thaw show very good agreements with the experimental results. The RSM result can be used to predict the probability of occurrence for designer specified critical values. Therefore, it is possible to evaluate the life cycle management of concrete structures considering the accumulated damages due to the cyclic freeze-thaw using the proposed prediction method.

Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence

  • Wang, Licheng;Ueda, Tamon
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.125-142
    • /
    • 2011
  • In the present paper, a numerical simulation method based on mesoscopic composite structure of concrete, the truss network model, is developed to evaluate the diffusivity of concrete in order to account for the microstructure of concrete, the binding effect of chloride ions and the chloride concentration dependence. In the model, concrete is described as a three-phase composite, consisting of mortar, coarse aggregates and the interfacial transition zones (ITZs) between them. The advantage of the current model is that it can easily represent the movement of mass (e.g. water or chloride ions) through ITZs or the potential cracks within concrete. An analytical method to estimate the chloride diffusivity of mortar and ITZ, which are both treated as homogenious materials in the model, is introduced in terms of water-to-cement ratio (w/c) and sand volume fraction. Using the newly developed approaches, the effect of cracking of concrete on chloride diffusion is reflected by means of the similar process as that in the test. The results of calculation give close match with experimental observations. Furthermore, with consideration of the binding capacity of chloride ions to cement paste and the concentration dependence for diffusivity, the one-dimensional nonlinear diffusion equation is established, as well as its finite difference form in terms of the truss network model. A series of numerical analysises performed on the model find that the chloride diffusion is substantially influenced by the binding capacity and concentration dependence, which is same as that revealed in some experimental investigations. This indicates the necessity to take into account the binding capacity and chloride concentration dependence in the durability analysis and service life prediction of concrete structures.