• Title/Summary/Keyword: predicted bending

검색결과 313건 처리시간 0.026초

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

대변형 쉘 요소를 이용한 박 강판 형상교정 공정의 탄소성 유한요소 해석 (Analysis of Leveling Process of Sheet Steels by Elastic-Plastic Large Deformation Shell Elements)

  • 박기철;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.319-322
    • /
    • 2003
  • For the analysis of leveling process by the 3-dimensional elastic-plastic finite element method, a finite element analysis program modeling large deformation of shell has been developed. This program fur analyzing large deformation of sheet during leveling includes spring-back analysis as well as efficient contact treatment between sheet and rolls of leveler. This is verified by the simple leveling experiment with 5 rolls at laboratory. Besides the leveling examples, problems within the category of large strain and rotation, such as 3-dimensional roll-up and gutter occurrence at continuous bending-unbending process are also tested for verification of the program. The residual curvatures of strip predicted by finite element analysis are within 20% error range of the experiment. The formation and direction of anticlastic curvature or gutter during bending-unbending under tension is predicted and this agrees with the experimental results.

  • PDF

소경재를 이용한 통직집성재의 휨강도 특성 (Bending Strength Properties of glulam made from small diameter logs.)

  • 박준철;홍순일
    • 한국가구학회지
    • /
    • 제13권2호
    • /
    • pp.11-18
    • /
    • 2002
  • This study was carried out to investigate the strength and technical feasibility of glulam from small diameter Pinus densiflora and Larix kaempferi. Small diameter logs are currently not used in structural laminated beam construction, but it is suggested that its properties may be feasible for this purpose. The glulam combinations were designed with high grade laminae located at outer laminations (face) and low grade laminae located at center laminations. Important problems of finger jointed glulam as a structural beam are the small modulus of rupture (MOR). One solution for this problem Mi to use veneer and solid wood as the face laminae. The MOE values were predicted for each beam from laminae. The results showed that actual beam MOE values exceeded slightly the predicted values. Based on the evaluation and analysis of Pinus and Larix glulam, the maximum load of Larix kaempferi glulam indicated large values. The bending properties of A and E types glulam were superior to others. It is suggested that this small diameter log can be a candidate for structural glulam construction, providing the proper combinations of face laminae.

  • PDF

건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발 (Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings)

  • 방성준;오정권
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

유리섬유 강화 Polypropylene의 고상굽힘성형시 Spring-back 현상 (The Spring-back Phenomena in Soild Phase Bending of Glass Fiber Reinforced Polypropylene)

  • 남궁천;김성일;이중희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.646-649
    • /
    • 1995
  • An experimental and analyical investigations were undertaken to improve understanding of spring-back phenomena of chopped fiber reinforced thermoplastic composite sheet. The materials tested contained 20, 35, 40 percent by weight of readomly oriented glass fiber in a prolypropylene matrix. The simple bending tests were performed at temperatures ranging form 75 .deg. c to 150 .deg. c with 25 .deg. c increment and at punch speed of 1mm/sec and 0.01mm/sec. The spring-back angel measured in pure bending is compared with the prediction base on the analytical model. Good agreement between experimental and predicted results was observed.

  • PDF

Creep analysis of concrete filled steel tube arch bridges

  • Wang, Y.F.;Han, B.;Du, J.S.;Liu, K.W.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.639-650
    • /
    • 2007
  • Applying the method calculating creep of Concrete Filled steel Tube (CFT) members based on the Elastic Continuation and Plastic Flow theory for concrete creep with the finite element method, the paper develops a new numerical method for the creep of CFT arch bridges considering effects of bending moment. It is shown that the method is feasible and reasonable through comparing the predicted stresses and deflection caused by the creep with the results obtained by the method of Gu et al. (2001) based on ACI209R model and experimental data of an actual CFT arch bridge. Furthermore, nine CFT arch bridges with different types are calculated and analyzed with and without the effects of bending moment. As a result, the bending moment has considerable influences on long-term deformations and internal forces of CFT arch bridges, especially when the section of arch rib is subjected to a large bending moment.

크롬-카바이드 복합체의 고온 크리프 거동 (High Temperature Creep Behavior of Cr3C2 Composites)

  • 김지환;한동빈;김기태
    • 한국세라믹학회지
    • /
    • 제32권11호
    • /
    • pp.1219-1226
    • /
    • 1995
  • Creep behaviors of Cr3C2 composites containing 90 wt% Cr3C2 and 10 wt% Ni were studied at high temperature. Compression tests at 100$0^{\circ}C$ and bending tests at 100$0^{\circ}C$ and 105$0^{\circ}C$ were done in argon environment. In all test conditions primary and steady-state creep behaviors were observed. Stress exponent and activatiion energy were determined from the experimental data. By microstructural analysis of Cr3C2 composites after creep test, the separate agglomerations of Ni phase were observed. Numerical analysis was also studied to analyze bending creep behaviors of Cr3C2 by assumming different tensile and compressive creep behavior in a bending sample. From the analysis, it was found that the stress state at the compressive region as applied stress increased. The observed creep rates were compared with the predicted creep rates by estimating power-law creep parameters from bending test data.

  • PDF

DP590 고장력 강판 성형을 위한 굽힘 금형 설계에 관한 연구 (A Study on the Design of Bending Dies for Forming of DP590 High Strength Steel Sheet)

  • 천정필;안동규
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.43-49
    • /
    • 2024
  • A high strength steel sheet (HSSS) has widely used to improve the specific rigidity of parts and the safety of the passenger in automotive industries. However, the HSSS is difficult to manufacture precise parts through a forming process due to the reduced elongation and the increased elastic recovery. The goal of the paper is to investigate the improved design of bending dies for DP590 HSSS. The over forming type bending dies with cam systems added to the side of the formed part is proposed to improve the quality of the part. The effects of the die design and the forming parameter on formability and elastic recovery characteristics is examined using finite element analyses (FEAs). From the results of FEAs, proper die design and forming parameters are predicted.

Interface characteristics of RC beams strengthened with FRP plate

  • Peng, Minglan;Shi, Zhifei
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.315-330
    • /
    • 2004
  • A four-point bending RC beam strengthened with FRP plate is investigated based on the theory of elasticity. Taking the adhesive layer into account but ignoring some secondary parameters, the analytical solutions of the normal stress and shear stress on concrete-adhesive interface are obtained and discussed. Besides, the pure bending region of the beam is analyzed and the ultimate load of the beam is predicted. The results obtained in the present paper agree very well with both the results of FEM and the experimental findings.

채널 성형에서 마찰이 탄성복원에 미치는 영향 (Effect of Friction on Springback in Channel Forming)

  • 한영호;송윤준
    • 소성∙가공
    • /
    • 제12권3호
    • /
    • pp.236-243
    • /
    • 2003
  • Maintaining the required dimensional accuracy after springback becomes the main concern of sheet-forming die designers when formability is secured through beforehand tryouts. As a part to build guidelines for springback control in automobile frame forming, experiments are carried out to show the effects of process parameters, such as holding force, blank size, and lubrication, on corner angles of channels formed by U-bending or by square-cup drawing and trimming. The results predicted by a commercial FE package were compared with the experiment and the current limitations on springback evaluation were closely discussed.