• Title/Summary/Keyword: precursor method.

Search Result 920, Processing Time 0.028 seconds

Fabrication of High Tc Superconductor Using Thermal pyrolysis Method (열분해법 의한 초전도선재 합성)

  • Lee, Sang-Heon;Choi, Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1337-1338
    • /
    • 2006
  • BiSrCaCuO was prepared by the thermal pyrolysis method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $90^{\circ}C$ and calcination at $840^{\circ}C-920^{\circ}C$ for 4h, the high Tc phase was cleary observed. In this paper, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of BiSrCaCuO superconductor, and we reported the production of the BiSrCaCuO high Tc superconductor by the pyrolysis method.

  • PDF

Introducing an Efficient and Eco-Friendly Spray-Drying Process for the Synthesis of NCM Precursor for Lithium-ion Batteries

  • Hye-Jin Park;Seong-Ju Sim;Bong-Soo Jin;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.168-177
    • /
    • 2024
  • Ni-rich cathode is one of the promising candidates for high-energy lithium-ion battery applications. Due to its specific capacity, easy industrialization, and good circulation ability, Ni-rich cathode materials have been widely used for lithium-ion batteries. However, due to the limitation of the co-precipitation method, including sewage pollution, and the instability of the long production cycles, developing a new efficient and environmentally friendly synthetic approach is critical. In this study, the Ni0.91Co0.06Mn0.03CO3 precursor powder was successfully synthesized by an efficient spray-drying method using carbonate compounds as a raw material. This Ni0.91Co0.06Mn0.03CO3 precursor was calcined by mixing with LiOH·H2O (5 wt% excess) at 480℃ for 5 hours and then sintered at two different temperatures (780℃/800℃) for 15 hours under an oxygen atmosphere to complete the cathode active material preparation, which is a key component of lithium-ion batteries. As a result, LiNi0.91Co0.06Mn0.03O2 cathode active material powders were obtained successfully via a simple sintering process on the Ni0.91Co0.06Mn0.03CO3 precursor powder. Furthermore, the obtained LiNi0.91Co0.06Mn0.03O2 cathode active material powders were characterized. Overall, the material sintered at 780℃ shows superior electrochemical performance by delivering a discharge capacity of 190.76 mAh/g at 1st cycle (0.1 C) and excellent capacity retention of 66.80% even after 50 cycles.

The synthesis of high purity micro Ag particle using the rapid firing -liquid phase precursor method (RF-LPP법을 이용한 고순도 마이크로 Ag 입자 합성)

  • Lim, Byeong-Seok;Song, Young-Hyun;Lee, Min-Ji;Mang, Sung-Ryul;Yoon, Dae-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.93-97
    • /
    • 2015
  • To synthesis of high purity micro silver particle, we extracted the silver from the waste by liquid-liquid extraction and used the rapid firing-liquid phase precursor (RF-LPP) method. The silver micro particle was synthesized at $500^{\circ}C$ for 3 hr in air atmosphere by RF-LPP method. As a result of the research, micro silver particle is measured X-ray diffraction (XRD), the main peak is nearly corresponded to the same as JCPDS card (No.87-0719). With using the RF-LPP method, the fine Ag micro particle indicated due to the control of nucleation site and the oxygen contents was decreased by reducing treatment. We expect this research contribute to advance in field of the recycling technology.

Electrocatalytic Performances of La0.6Ca0.4CoO3 and Pb2Ru2O6 prepared by Amorphous Citrate Precursor Method (Amorphous Citrate Precursor 법으로 제조한 La0.6Ca0.4CoO3와 Pb2Ru2O6의 전기화학적 촉매능)

  • Lee, Churl Kyoung;Sohn, Hun-Joon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.331-335
    • /
    • 1999
  • The transition metal oxides have been of interest as bifunctional electrocatalysts for bifunctional air electrodes. The amorphous citrate precursor (ACP) process has been optimized to prepare perovskite (La0.6Ca0.4CoO3) and pyrochlore (Pb2Ru2O6) powders with high surface area, and consequent improvement of The electrocatalytic performance in an air electrode with thermal treatment. PTFE -bonded gas diffusion electrodes loaded with perovskitc and pyrochlore catalysts showed good bifunctional performances. The electrodes were fairly stable up to 100 hour in the galvanostatic mode at ${\pm}25mA/cm^2$, from which these electrodes offer promise as practical bifunctional air electrodes.

  • PDF

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min;Kim, Sung Tae;Ko, Jae Hyuck;Ahn, Byung Tae;Chalapathy, R.B.V.
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

Synthesis of polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$ via the PVA-precursor method : the effect of synthetic variation on the electrochemical property of the lithium ion battery (PVA-전구체법을 적용한 $Li_xNi_{1-y}Co_yO_2$ 다결정성 분말의 합성 : 합성조건에 따른 리튬이온전지의 전기화학적 특성 고찰)

  • Kim Sue Joo;Song Me Young;Kwon Hye Young;Park Seon Hui;Park Dong Gon;Kweon Ho-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.5-12
    • /
    • 1999
  • By the PVA-precursor method, polycrystalline powder of $Li_xNi_{1-y}Co_yO_2$, cathode material for lithium battery, was synthesized. Using the powder as the cathode material, lithium ion batteries were fabricated, whose electrochemical properties were measured. The effect of changing synthetic conditions, such as PvA/metal mole ratio, concentration of PVA, degree of polymerization of PVA, pyrolysis condition, and metal stoichiometry, on the battery performance was investigated. Considering the initial performance of the cell, the optimum stoichiometry of the $Li_xNi_{1-y}Co_yO_2$, synthesized by the PVA-precursor method was observed to be x: 1.0 and y=0.26. A minor phase of $Li_2CO_3$, which was generated by the residual carbon in the powder precursor, deteriorated the performance of the cell. In order to eliminate the minor phase, the precursor had to be pyrolyzed under the flow of dry air. Annealing the powder at $500^{\circ}C$ under the flow of dry air also eliminated the minor phase, and the performance of the cell was largely improved by the treatment.

Investigation of Low-Temperature Processed Amorphous ZnO TFTs Using a Sol-Gel Method

  • Chae, Seong Won;Yun, Ho Jin;Yang, Seung Dong;Jeong, Jun Kyo;Park, Jung Hyun;Kim, Yu Jeong;Kim, Hyo Jin;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.155-158
    • /
    • 2017
  • In this paper, ZnO Thin Film Transistors (TFTs) were fabricated by a sol-gel method using a low-temperature process, and their physical and electrical characteristics were analyzed. To lower the process temperature to $200^{\circ}C$, we used a zinc nitrate hydrate ($Zn(NO_3)_2{\cdot}xH_2O$) precursor. Thermo Gravimetric Analyzer (TGA) analysis showed that the zinc nitrate hydrate precursor solution had 1.5% residual organics, much less than the 6.5% of zinc acetate dihydrate at $200^{\circ}C$. In the sol-gel method, organic materials in the precursor disrupt formation of a high-quality film, and high-temperature annealing is needed to remove the organic residuals, which implies that, by using zinc nitrate hydrate, ZnO devices can be fabricated at a much lower temperature. Using an X-Ray Diffractometer (XRD) and an X-ray Photoelectron Spectrometer (XPS), $200^{\circ}C$ annealed ZnO film with zinc nitrate hydrate (ZnO (N)) was found to have an amorphous phase and much more oxygen vacancy ($V_o$) than Zn-O bonds. Despite no crystallinity, the ZnO (N) had conductance comparable to that of ZnO with zinc acetate dihydrate (ZnO (A)) annealed at $500^{\circ}C$ as in TFTs. These results show that sol-gel could be made a potent process for low-cost and flexible device applications by optimizing the precursors.

Microwave-Assisted and Conventional Synthesis of Benzothieno [3,2-e] [1,3,4] triazolo[4,3-c]pyrimidines: A Comparative Study

  • Gaonkar, Santhosh L.;Ahn, Chuljin;Princia, Princia;Shetty, Nitinkumar S.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.4
    • /
    • pp.388-392
    • /
    • 2014
  • Benzothieno[2,3-d]pyrimidines (2,3,4) and benzothieno[3,2-e][1,3,4]triazolo[4,3-c] pyrimidines (5a-c) were synthesized from the precursor 2-amino-7-oxo-4,5,6,7-tetrahydro-1-benzothiophene-3-carbonitrile 1 by employing the conventional method as well as the microwave irradiation technique. The precursor 2-amino-3-cyanothiophene analogue 1 was synthesized by employing the well-known Gewald reaction. In the present work it has been found that the microwave supported syntheses are more efficient than the conventional classical heating methods. The structures of all the compounds were ascertained by spectral and analytical data.

Characteristics of Semiconductor Thin Film $NO_x$ Sensor Fabricated by MOD Method (MOD법에 의해 제조된 $NO_x$ 가스용 반도체 박막센서의 특성)

  • 송수호;송민석;이재열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1001-1006
    • /
    • 1998
  • $WO_3$ based semiconduction sensor have been reported to have excellent sension properties to $NO_x$ gases by many researchers. In this study appropriate $WO_3$ precursor have been chosen and thin film sensors were fabricated by metallo organic deposition process. Their sensing characteristics were investigated as a function of NO concentration, heat treatment, and measuring temperature. Tungsten dichloro triethoxide was found to be a good precursor for $WO_3$ thin film in this method. Samples heat treated at $600^{\circ}C$ showed sensitivity (S) 200 to 50 ppm NO gas when measuring temperature was $150^{\circ}C$.

  • PDF

An Observer-Theoretic Approach to Estimating Neutron Flux and Precursor Spatial Distributions (중성자속과 프리커서의 공간분포 추정을 위한 옵저버 이론 방법)

  • Park, Young-Ho;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 1990
  • This paper describes a method for estimating the flux and precursor spatial distributions using only limited flux measurements. It is based on the Luenberger observer in control theory, extended to the distributed parameter systems such as the space-time reactor dynamics equation. The results of the application of the method to simple reactor models showed that the flux distribution could be estimated by the observer very efficiently using information from only a few sensors.

  • PDF