• Title/Summary/Keyword: preconditioning.

Search Result 261, Processing Time 0.032 seconds

Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain

  • Kang, Young-Jin;Park, Min-Kyu;Lee, Hyun-Suk;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.275-280
    • /
    • 2008
  • A brief ischemic insult induces significant protection against subsequent massive ischemic events. The molecular mechanisms known as preconditioning (PC)-induced ischemic tolerance are not completely understood. We investigated whether kinetic changes of cyclooxygenase (COX)-2 during reperfusion time-periods after PC were related to ischemic tolerance. Rats were given PC by occlusion of middle cerebral artery (MCAO) for 10 min and sacrificed after the indicated time-periods of reperfusion (1, 2, 4, 8, 12, 18 or 24 h). In PC-treated rats, focal ischemia was induced by occlusion of MCA for 24 h and brain infarct volume was then studied to determine whether different reperfusion time influenced the damage. We report that the most significant protection against focal ischemia was obtained in rats with 8 h reperfusion after PC. Administration of indomethacin (10 mg/kg, oral) or rofecoxib (5 mg/kg, oral) 48 h prior to PC counteracted the effect of PC. Immunohistochemical analysis showed that COX-2 and HO-l protein were induced in PC-treated rat brain, which was significantly inhibited by rofecoxib. Taken together, we concluded that the kinetic changes of COX-2 expression during the reperfusion period after PC might be partly responsible for ischemic tolerance.

Role of Ischemic Preconditioning in the Cardioprotective Mechanisms of Monomeric C-Reactive Protein-Deposited Myocardium in a Rat Model

  • Kim, Eun Na;Choi, Jae-Sung;Kim, Chong Jai;Kim, So Ra;Oh, Se Jin
    • Journal of Chest Surgery
    • /
    • v.54 no.1
    • /
    • pp.9-16
    • /
    • 2021
  • Background: The deposition of monomeric C-reactive protein (mCRP) in the myocardium aggravates ischemia-reperfusion injury (IRI) and myocardial infarction. Ischemic preconditioning (IPC) is known to protect the myocardium against IRI. Methods: We evaluated the effects of IPC on myocardium upon which mCRP had been deposited due to IRI in a rat model. Myocardial IRI was induced via ligation of the coronary artery. Direct IPC was applied prior to IRI using multiple short direct occlusions of the coronary artery. CRP was infused intravenously after IRI. The study included sham (n=3), IRI-only (n=5), IRI+CRP (n=9), and IPC+IRI+CRP (n=6) groups. The infarcted area and the area at risk were assessed using Evans blue and 2,3,5-triphenyltetrazolium staining. Additionally, mCRP immunostaining and interleukin-6 (IL-6) mRNA reverse transcription-polymerase chain reaction were performed. Results: In the IRI+CRP group, the infarcted area and the area of mCRP deposition were greater, and the level of IL-6 mRNA expression was higher, than in the IRI-only group. However, in the IPC+IRI+CRP group relative to the IRI+CRP group, the relative areas of infarction (20% vs. 34%, respectively; p=0.079) and mCRP myocardial deposition (21% vs. 44%, respectively; p=0.026) were lower and IL-6 mRNA expression was higher (fold change: 407 vs. 326, respectively; p=0.376), although the difference in IL-6 mRNA expression was not statistically significant. Conclusion: IPC was associated with significantly decreased deposition of mCRP and with increased expression of IL-6 in myocardium damaged by IRI. The net cardioprotective effect of decreased mCRP deposition and increased IL-6 levels should be clarified in a further study.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

Modulation of Inula racemosa Hook Extract on Cardioprotection by Ischemic Preconditioning in Hyperlipidaemic Rats

  • Arun Kumar Tiwari;Pushpraj S Gupta;Mahesh Prasad;Paraman Malairajan
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.369-381
    • /
    • 2022
  • Objectives: Hyperlipidemia (HL) is a major cause of ischemic heart diseases. The size-limiting effect of ischemic preconditioning (IPC), a cardioprotective phenomenon, is reduced in HL, possibly because of the opening of the mitochondrial permeability transition pore (MPTP). The objective of this study is to see what effect pretreatment with Inula racemose Hook root extract (IrA) had on IPC-mediated cardioprotection on HL Wistar rat hearts. An isolated rat heart was mounted on the Langendorff heart array, and then ischemia reperfusion (I/R) and IPC cycles were performed. Atractyloside (Atr) is an MPTP opener. Methods: The animals were divided into ten groups, each consisting of six rats (n = 6), to investigate the modulation of I. racemosa Hook extract on cardioprotection by IPC in HL hearts: Sham control, I/R Control, IPC control, I/R + HL, I/R + IrA + HL, IPC + HL, IPC + NS + HL, IPC + IrA+ HL, IPC + Atr + oxidative stress, mitochondrial function, integrity, and hemodynamic parameters are evaluated for each group. Results: The present experimental data show that pretreatment with IrA reduced the LDH, CK-MB, size of myocardial infarction, content of cardiac collagen, and ventricular fibrillation in all groups of HL rat hearts. This pretreatment also reduced the oxidative stress and mitochondrial dysfunction. Inhibition of MPTP opening by Atr diminished the effect of IrA on IPC-mediated cardioprotection in HL rats. Conclusion: The study findings indicate that pretreatment with IrA e restores IPC-mediated cardioprotection in HL rats by inhibiting the MPTP opening.

Influence of a Pre- and Postconditioning Treadmill Exercise on Intracerebral Hemorrhage-induced Apoptotic Neuronal Cell Death in Rats

  • Ko, Il-Gyu;Shin, Mal-Soon;Sim, Young-Je;Kim, Chang-Ju;Lee, Sam-Jun
    • Korean Journal of Exercise Nutrition
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 2009
  • Intracerebral hemorrhage (ICH) is a common cause of stroke, and it occurs mainly in the striatum, thalamus, cerebellum, and pons. Physical exercise is known to ameliorate neurologic impairment induced by various brain insults. In the present study, the influence of pre-and post-conditioning of treadmill exercise on spatial learning ability, the lesion volume, and apoptotic neuronal cell death in the striatum following ICH in rats was investigated. ICH in the striatum was induced by injection of collagenase using strereotaxic instrument. The rats in the pre-exercise group were scheduled to run on a treadmill before ICH induction for 2 consecutive weeks. The rats in the post-exercise group were scheduled to run on a treadmill after ICH induction for 2 weeks. The rats in the pre-exercise and post-exercise group were scheduled to run on a preconditioning treadmill exercise 2 weeks before ICH induction until postconditioning treadmill exercise 2 weeks after ICH induction, except the day of surgery. For this study, radial arm maze task, Nissl staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were performed. Our date showed that treadmill exercise suppressed the ICH-induced apoptotic neuronal cell death and decreased lesion volume in the stratum. Treadmill exercise also alleviated the ICH-induced impairment of spatial learning ability. Preconditioning treadmill exercise before the ICH insult and postconditioning treadmill exercise after the ICH insult showed similar effectiveness on the recovery of ICH. In this study, however, preconditioning exercise before the ICH insult and postconditioning exercise after the ICH insult showed the most potent effectiveness on the recovery of ICH.

Cardioprotective Effect by Preconditioning with Calcium-free Solution (칼슘결핍용액 투여 전처치에 의한 심근보호 효과)

  • 조대윤;이종화;김호덕
    • Journal of Chest Surgery
    • /
    • v.32 no.9
    • /
    • pp.773-780
    • /
    • 1999
  • Background: It has been demonstrated that brief periods of calcium depletion and repletion (calcium-free preconditioning, CP) have cardioprotective effects as seen in ischemic preconditioning(IP) which enhances the recovery of post-ischemic contractile dysfunction and reduces the incidence of reperfusion-induced arrhythmia or infarct size after a prolonged ischemia. In the present study, we tested this paradoxical phenomenon in isolated rabbit hearts. Material and Method: Hearts isolated from New Zealand white rabbits(1.5∼2.0 Kg body weight) were perfused with Tyrode solution using the Langendorff technique. After stabilizing the baseline hemodynamics, the hearts were subjected to 45 minutes of global ischemia followed by 120 minutes of reperfusion with IP(IP group, n=7) or without IP (ischemic control group, n=7). IP was induced by a single episode of 5 minutes global ischemia and 10 minutes reperfusion. In the CP group(n=7), the hearts were subjected to perfusion with Tyrode solution with calcium depletion for 5 minutes and repletion for 10 minutes, and 45 minutes of ischemia and 120 minutes of reperfusion. Left ventricular function including developed pressure, dP/dt, heart rate, left ventricular end-diastolic pressure and coronary flow was measured. Infarct size was determined by staining with 1% triphenyltetrazolium chloride and planimetry. Data were analyzed by a one-way analysis of variance and Tukey's post-hoc test. Result: In comparison with the ischemic control group, IP significantly enhanced the recovery of the left ventricular function including the left ventricular developed pressure, contractility, and coronary flow; in contrast, these functional parameters of the CP group tended to be lower than those of the ischemic control group. However, the infarct size was significantly reduced by IP or CP(p<0.05). Conclusion: These results suggest that in isolated Langendorff-perfused rabbit heart model, CP(induced by single episode of 5 minutes calcium depletion and 10 minutes repletion) could not improve the post-ischemic contractile dysfunction(after a 45-minute global ischemia) but it has an infarct size-limiting effect.

  • PDF

Effects of Extrusion Condition of Barley on the Growth and Nutrient Utilization in Growing Pigs

  • Piao, X.S.;Chae, B.J.;Kim, J.H.;Jin, J.;Cho, W.T.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.5
    • /
    • pp.783-787
    • /
    • 1999
  • To study the effects of different extrusion conditions of barley on growth performance, nutrient digestibility and nutrient excretion in feces, a total of 150 growing pigs ($Landrace{\times}Duroc{\times}Large$ White; average 24.4 kg body weight) were allotted to five treatments, in a completely randomized block design. The experimental diets were based on corn-soybean and 30% of barley was included in each diet; barley was the only extruded ingredient. The treatments were 1) no extrusion (Control); 2) extrusion at $100^{\circ}C$ without preconditioning (ENLT); 3) extrusion at $150^{\circ}C$ without preconditioning (ENHT); 4) extrusion at $100^{\circ}C$ with preconditioning (ECLT); 5) extrusion at $150^{\circ}C$ with preconditioning (ECHT). Temperature in the barrel was controlled within ${\pm}5^{\circ}C$ by feed rate with the addition of water at the rate of $3{\ell}\;per\;min$. in the extruder for each treatment. For the 6 week experimental period, extrusion of barley improved the average daily gain (ADG) and digestibilities of dry matter, crude protein and gross energy in growing pigs. As compared to control, significant improvements in ADG (p<0.05) were shown in the groups of feeding extruded barley at high temperature (ENHT and ECHT). There were also significant differences in the digestibilities of DM, CP and P between extrusion temperatures. Barley extruded at high temperature gave better digestibilities of DM, CP and GE than barley extruded at low temperature. Extruded barley diet groups showed significantly (p<0.05) lower excretions of DM, nitrogen (N) and P per kg gain as compared to the ground barley group. DM, N and P excretion per kg gain were also significantly lower in pigs fed barley extruded at $150^{\circ}C$ than at $100^{\circ}C$. In conclusion, extrusion considerably improved the nutritive value of barley and it appeared that temperature is the most important variable.

Propofol protects human keratinocytes from oxidative stress via autophagy expression

  • Yoon, Ji-Young;Jeon, Hyun-Ook;Kim, Eun-Jung;Kim, Cheul-Hong;Yoon, Ji-Uk;Park, Bong-Soo;Yu, Su-Bin;Kwak, Jin-Won
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Background: The skin consists of tightly connected keratinocytes, and prevents extensive water loss while simultaneously protecting against the entry of microbial pathogens. Excessive cellular levels of reactive oxygen species can induce cell apoptosis and also damage skin integrity. Propofol (2,6-diisopropylphenol) has antioxidant properties. In this study, we investigated how propofol influences intracellular autophagy and apoptotic cell death induced by oxidative stress in human keratinocytes. Method: The following groups were used for experimentation: control, cells were incubated under normoxia (5% $CO_2$, 21% $O_2$, and 74% $N_2$) without propofol; hydrogen peroxide ($H_2O_2$), cells were exposed to $H_2O_2$ ($300{\mu}M$) for 2 h; propofol preconditioning (PPC)/$H_2O_2$, cells pretreated with propofol ($100{\mu}M$) for 2 h were exposed to $H_2O_2$; and 3-methyladenine $(3-MA)/PPC/H_2O_2$, cells pretreated with 3-MA (1 mM) for 1 h and propofol were exposed to $H_2O_2$. Cell viability, apoptosis, and migration capability were evaluated. Relation to autophagy was detected by western blot analysis. Results: Cell viability decreased significantly in the $H_2O_2$ group compared to that in the control group and was improved by propofol preconditioning. Propofol preconditioning effectively decreased $H_2O_2$-induced cell apoptosis and increased cell migration. However, pretreatment with 3-MA inhibited the protective effect of propofol on cell apoptosis. Autophagy was activated in the $PPC/H_2O_2$ group compared to that in the $H_2O_2$ group as demonstrated by western blot analysis and autophagosome staining. Conclusion: The results suggest that propofol preconditioning induces an endogenous cellular protective effect in human keratinocytes against oxidative stress through the activation of signaling pathways related to autophagy.

Effects of Exercise Preconditioning on the Expression of NGF, Synapsin I, and ChAT in the Hippocampus of Socially Isolated Rats (사회적으로 고립된 쥐의 해마에서 NGF와 Synapsin I, ChAT의 단백질 수준에 미치는 사전운동효과)

  • Hong, Young-Pyo;Kim, Hyun-Tae
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1180-1186
    • /
    • 2012
  • The purpose of this study was to investigate the effect of exercise preconditioning (EPC) on nerve growth factor (NGF), synapsin I, and choline acetyltransferase (ChAT) in the hippocampus of rats subjected to social isolation (SI). We randomly assigned four groups of male Sprague-Dawley (SD) rats (n=32) to the following treatments: GC: group housing control; IC: isolation control; GE: group housing exercise; IE: isolation exercise (n=8 each group). The rats underwent EPC 5 days a week for 8 weeks, and the speed of the treadmill was gradually increased (grade $0^{\circ}C$). After EPC, they were immediately subjected to SI for 8 weeks. The results showed that the protein levels of NGF, synapsin I, and ChAT in the hippocampus were significantly decreased in the IC group (p<0.05) compared with the GC group. However, these protein levels were significantly higher in the IE group (p<0.05). These results show that EPC may buffer the decline of function in the hippocampus by ameliorating the reduction in NGF, synapsin I, and ChAT induced by SI.

Cardioprotective Effect of Calcium Preconditioning and Its Relation to Protein Kinase C in Isolated Perfused Rabbit Heart (적출관류 토끼 심장에서 칼슘 전처치에 의한 심근보호 효과와 Protein Kinase C와의 관계)

  • 김용한;손동섭;조대윤;양기민;김호덕
    • Journal of Chest Surgery
    • /
    • v.32 no.7
    • /
    • pp.603-612
    • /
    • 1999
  • Background : It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. Material and Method : The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) Method: The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. Result: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19∼23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. Conclusion: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.

  • PDF