• Title/Summary/Keyword: preconditioned Gauss-Seidel method

Search Result 5, Processing Time 0.016 seconds

PRECONDITIONED GAUSS-SEIDEL ITERATIVE METHOD FOR Z-MATRICES LINEAR SYSTEMS

  • Shen, Hailong;Shao, Xinhui;Huang, Zhenxing;Li, Chunji
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.303-314
    • /
    • 2011
  • For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (${\alpha}$) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (${\alpha}$) + $\bar{K}({\beta})$ as a preconditioner. We present some comparison theorems, which show the rate of convergence of the new method is faster than the basic method and the method in [7] theoretically. Numerical examples show the effectiveness of our algorithm.

A Preconditioned Time Method for Efficient Calculation of Reactive Flow (예조건화 시간차분을 통한 화학반응유동의 효율적 계산)

  • Kim, Seong-Lyong;Jeung, In-Seuck;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.219-230
    • /
    • 1999
  • The Equations of Chemical kinetics are very stiff, which forces the use of an implicit scheme. The problem of implicit scheme, however, is that the jacobian must be solved at each time step. In this paper, we examined the methodology that can be stable without full chemical jacobian, This method is derived by applying the different time steps to the chemical source term. And the lower triangular chemical jacobian is derived. This is called the preconditioned time differencing method and represents partial implicit method. We show that this method is more stable in chemical kinetics than the full implicit method and that this is more efficient in supersonic combustion problem than the full jacobian method with same accuracy.

  • PDF

Numerical Characteristics of Upwind Schemes for Preconditioned Navier-Stokes Equations (예조건화된 Navier-Stokes 방정식에서의 풍상차분법의 수치특성)

  • Gill, Jae-Heung;Lee, Du-Hwan;Sohn, Duk-Young;Choi, Yun-Ho;Kwon, Jang-Hyuk;Lee, Seung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1122-1133
    • /
    • 2003
  • Numerical characteristics of implicit upwind schemes, such as upwind ADI, line Gauss-Seidel (LGS) and point Gauss-Seidel (LU) algorithms, for Navier-Stokes equations have been investigated. Time-derivative preconditioning method was applied for efficient convergence at low Mach/Reynolds number regime as well as at large grid aspect ratios. All the algorithms were expressed in approximate factorization form and von Neumann stability analysis was performed to identify stability characteristics of the above algorithms in the presence of high grid aspect ratios. Stability analysis showed that for high aspect ratio computations, the ADI and LGS algorithms showed efficient damping effect up to moderate aspect ratio if we adopt viscous preconditioning based on min-CFL/max-VNN time-step definition. The LU algorithm, on the other hand, showed serious deterioration in stability characteristics as the grid aspect ratio increases. Computations for several practical applications also verified these results.

Diffusion synthetic acceleration with the fine mesh rebalance of the subcell balance method with tetrahedral meshes for SN transport calculations

  • Muhammad, Habib;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.485-498
    • /
    • 2020
  • A diffusion synthetic acceleration (DSA) technique for the SN transport equation discretized with the linear discontinuous expansion method with subcell balance (LDEM-SCB) on unstructured tetrahedral meshes is presented. The LDEM-SCB scheme solves the transport equation with the discrete ordinates method by using the subcell balances and linear discontinuous expansion of the flux. Discretized DSA equations are derived by consistently discretizing the continuous diffusion equation with the LDEM-SCB method, however, the discretized diffusion equations are not fully consistent with the discretized transport equations. In addition, a fine mesh rebalance (FMR) method is devised to accelerate the discretized diffusion equation coupled with the preconditioned conjugate gradient (CG) method. The DSA method is applied to various test problems to show its effectiveness in speeding up the iterative convergence of the transport equation. The results show that the DSA method gives small spectral radii for the tetrahedral meshes having various minimum aspect ratios even in highly scattering dominant mediums for the homogeneous test problems. The numerical tests for the homogeneous and heterogeneous problems show that DSA with FMR (with preconditioned CG) gives significantly higher speedups and robustness than the one with the Gauss-Seidel-like iteration.