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COMPARISON RESULTS FOR THE PRECONDITIONED

GAUSS-SEIDEL METHODS

Jae Heon Yun

Abstract. In this paper, we provide comparison results of several types
of the preconditioned Gauss-Seidel methods for solving a linear system
whose coefficient matrix is a Z-matrix. Lastly, numerical results are pre-

sented to illustrate the theoretical results.

1. Introduction

In this paper, we consider the following linear system

(1) Ax = b, x, b ∈ Rn,

where A = (aij) ∈ Rn×n is a nonsingular matrix. Throughout the paper, we
always assume that A = I−L−U , where I is the identity matrix, L and U are
strictly lower and strictly upper triangular matrices, respectively. The basic
iterative method for solving the linear system (1) is

(2) Mxk+1 = Nxk + b, k = 0, 1, . . . ,

where x0 is an initial vector, A = M −N and M is nonsingular. Then (2) can
be also written as

(3) xk+1 = M−1Nxk +M−1b, k = 0, 1, . . . ,

where M−1N is called an iteration matrix of the iterative method (3).
We now transform the original linear system (1) into the preconditioned

linear system

(4) PAx = Pb,

where P is called a preconditioner. If we apply the Gauss-Seidel method to the
preconditioned linear systems (4), then we obtain the preconditioned Gauss-
Seidel method for solving the linear system (1). The preconditioned Gauss-
Seidel method has been studied by many authors [2, 3, 4, 5, 6, 8, 9, 11, 12].
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In 1991, Gunawardena et al. [3] proposed the preconditioner Ps = I + S,
where

S =


0 −a12 0 · · · 0
0 0 −a23 · · · 0
...

...
...

. . .
...

0 0 0 · · · −an−1,n

0 0 0 0 0

 .

In 2001, Evans et al. [2] proposed the preconditioner P1 = I +R1, where

R1 =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

−an1 · · · 0 0

 .

In 2004, Niki et al. [8] proposed the preconditioner Pr = I +R, where

R =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

−an1 · · · −an,n−1 0

 .

This paper is organized as follows. In Section 2, we present some notation,
definitions and preliminary results which we refer to later. In Section 3, we
provide comparison results of several types of the preconditioned Gauss-Seidel
methods for solving the linear system (1) whose coefficient matrix is a Z-matrix.
In Section 4, we provide numerical results to illustrate the theoretical results
obtained in Section 3.

2. Preliminaries

For a vector x ∈ Rn, x ≥ 0 (x > 0) denotes that all components of x are
nonnegative (positive). For two vectors x, y ∈ Rn, x ≥ y (x > y) means
that x − y ≥ 0 (x − y > 0). For a vector x ∈ Rn, |x| denotes the vector
whose components are the absolute values of the corresponding components of
x. These definitions carry immediately over to matrices. A matrix A = (aij) ∈
Rn×n is called a Z-matrix if aij ≤ 0 for i ̸= j, and A is called an M -matrix if A
is a Z-matrix and A−1 ≥ 0. For a square matrix A, ρ(A) denotes the spectral
radius of A, and A is called irreducible if the directed graph of A is strongly
connected [10].

A representation A = M−N is called a splitting of A whenM is nonsingular.
A splitting A = M −N is called regular if M−1 ≥ 0 and N ≥ 0, weak regular
if M−1 ≥ 0 and M−1N ≥ 0, and an M-splitting of A if M is an M -matrix
and N ≥ 0. A splitting A = M − N is called the Gauss-Seidel splitting of A
if M and −N are lower triangular and strictly upper triangular parts of A,
respectively. Some useful results which we refer to later are provided below.



THE PRECONDITIONED GAUSS-SEIDEL METHODS 209

Theorem 2.1 ([1]). Let A ≥ 0 be a matrix. Then the following hold.

(a) If Ax ≥ βx for a vector x ≥ 0 and x ̸= 0, then ρ(A) ≥ β.
(b) If Ax ≤ γx for a vector x > 0, then ρ(A) ≤ γ. Moreover, if A is

irreducible and if βx ≤ Ax ≤ γx, equality excluded, for a vector x ≥ 0
and x ̸= 0, then β < ρ(A) < γ and x > 0.

Lemma 2.2 ([5]). Let A = (aij) ∈ Rn×n be an irreducible M -matrix with
ai,i+1 ̸= 0 for 1 ≤ i ≤ n − 1, and let As = (I + S)A = Ms − Ns be the
Gauss-Seidel splitting of As. Then M−1

s Ns has a positive Perron vector and
ρ(M−1

s Ns) > 0.

Lemma 2.3 ([6]). Let A be an M -matrix and let As = (I + S)A = Ms −Ns

be the Gauss-Seidel splitting of As. If ρ(M−1
s Ns) > 0, then Ax ≥ 0 for any

nonnegative Perron vector of M−1
s Ns.

Lemma 2.4 ([7]). Suppose that A1 = M1 −N1 and A2 = M2 −N2 are weak
regular splittings of the monotone matrices A1 and A2, respectively, such that
M−1

2 ≥ M−1
1 . If there exists a positive vector x such that 0 ≤ A1x ≤ A2x, then

for the monotonic norm associated with x

∥M−1
2 N2∥x ≤ ∥M−1

1 N1∥x.

In particular, if M−1
1 N1 has a positive Perron vector, then

ρ(M−1
2 N2) ≤ ρ(M−1

1 N1).

3. Comparison results for preconditioned Gauss-Seidel methods

In this section, we provide comparison results of several types of the pre-
conditioned Gauss-Seidel methods for solving the linear system (1). We as-
sume that A = (aij) ∈ Rn×n is a Z-matrix with an1 ̸= 0 and ai,i+1 ̸= 0 for
1 ≤ i ≤ n− 1. For simplicity of exposition, let

Ps = I + S, P1 = I +R1, Ps1 = I + S +R1, Pr = I +R,

As = PsA, A1 = P1A, As1 = Ps1A, Ar = PrA.

Let the Gauss-Seidel splittings of A, As, A1, As1 and Ar be defined by

A = M−N, As = Ms−Ns, A1 = M1−N1, As1 = Ms1−Ns1, Ar = Mr−Nr.

Let SL = Λ0 + E0, R1U = Λ1 + E1 and RU = Λ2 + E2, where Λ0, Λ1 and Λ2

are diagonal matrices, and E0, E1 and E2 are strictly lower triangular matrices.
By simple calculation, one obtains

M = I − L, N = U,

Ms = (I − Λ0)− (L+ E0), Ns = U − S + SU,

M1 = (I − Λ1)− (L−R1 + E1), N1 = U,

Ms1 = (I − Λ0 − Λ1)− (L−R1 + E0 + E1), Ns1 = U − S + SU,

Mr = (I − Λ2)− (L−R+RL+ E2), Nr = U.
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Notice that N = N1 = Nr = U and Ns = Ns1 = U − S + SU . Let

T = M−1N, Ts = M−1
s Ns, T1 = M−1

1 N1, Ts1 = M−1
s1 Ns1, Tr = M−1

r Nr.

Then T is an iteration matrix of Gauss-Seidel method, and Ts, T1, Ts1 and Tr

are iteration matrices of several types of preconditioned Gauss-Seidel methods.

Theorem 3.1. Let A = (aij) ∈ Rn×n be a Z-matrix. If a1nan1 < 1 and
ai,i+1ai+1,i < 1 for 1 ≤ i ≤ n− 1, then

(a) ρ(Ts1) < ρ(T ) if ρ(T ) < 1,
(b) ρ(Ts1) = ρ(T ) if ρ(T ) = 1,
(c) ρ(Ts1) > ρ(T ) if ρ(T ) > 1.

Proof. Notice that As1 is also a Z-matrix. Since a1nan1 < 1 and ai,i+1ai+1,i <
1 for 1 ≤ i ≤ n− 1, As1 = Ms1 −Ns1 is an M -splitting of As1. Since an1 ̸= 0
and ai,i+1 ̸= 0 for 1 ≤ i ≤ n − 1, A is irreducible. Since A = M − N is an
M -splitting of A and N ̸= 0, there exists a positive eigenvector x such that
Tx = λx, where λ = ρ(T ) > 0. From Tx = λx and R1L = 0, one easily obtains

Ux = λ(I − L)x,

SUx = λ(S − Λ0 − E0)x,

R1Ux = λR1x.

(5)

Using (5) and R1U = Λ1 + E1,

Ts1x− λx = M−1
s1 (U − S + SU − λ(I − Λ0 − Λ1) + λ(L−R1 + E0 + E1))x

= M−1
s1 ((λ− 1)S + λ(Λ1 + E1)− λR1)x

= M−1
s1 ((λ− 1)S + λR1U − λR1)x

= (λ− 1)M−1
s1 (S + λR1)x.

(6)

If λ < 1, then from (6) Ts1x < λx. Since x > 0, Theorem 2.1 implies that
ρ(Ts1) < λ. For the cases of λ = 1 and λ > 1, Ts1x = λx and Ts1x > λx are
obtained from (6), respectively. Hence, the theorem follows from Theorem 2.1.

□

Theorem 3.2. If A = (aij) ∈ Rn×n is an M -matrix, then

ρ(Ts1) ≤ ρ(Ts) < 1.

Proof. Since A is an irreducible M -matrix with ai,i+1 ̸= 0, by Lemma 2.2 there
exists a positive eigenvector x such that Tsx = ρ(Ts)x and ρ(Ts) > 0. Since
Ns = Ns1, As1 −As = R1A = Ms1 −Ms and thus

(7) M−1
s −M−1

s1 = M−1
s1 R1AM−1

s .

From (7), one obtains

(8) Ts − Ts1 = M−1
s1 R1ATs.
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Multiplying by x on both sides of (8) gives

(9) ρ(Ts)x− Ts1x = ρ(Ts)M
−1
s1 R1Ax.

Since ρ(Ts) > 0, from Lemma 2.3

(10) Ax ≥ 0.

From (9) and (10),

(11) Ts1x ≤ ρ(Ts)x.

From Theorem 2.1 and (11), it follows that ρ(Ts1) ≤ ρ(Ts) < 1. □

Theorem 3.3. If A = (aij) ∈ Rn×n is an M -matrix, then

ρ(Ts1) ≤ ρ(T1) < 1.

Proof. We first consider the case where A1 is an irreducible matrix. Since A
is an irreducible M -matrix and A = M − N is a regular splitting of A, there
exists a positive eigenvector x > 0 such that Tx = ρ(T )x and ρ(T ) > 0. Since
0 < ρ(T ) < 1, Ax ≥ 0 and hence

As1x = (I + S +R1)Ax ≥ (I +R1)Ax = A1x ≥ 0.

It is easy to show that A1 and As1 are M -matrices and M−1
s1 ≥ M−1

1 . Hence,
from Lemma 2.4 ∥Ts1∥x ≤ ∥T1∥x. Since A1 is an irreducible M -matrix, T1 has
a positive Perron vector. From Lemma 2.4, it also follows that ρ(Ts1) ≤ ρ(T1).

We next consider the case where A1 is a reducible matrix. Let A(ϵ) = (aij(ϵ))
be defined by

aij(ϵ) =

{
an1 − ϵ if i = n and j = 1

aij otherwise,

where ϵ > 0. Let A1 = (I + R1)A = (āij), A1(ϵ) = (I + R1)A(ϵ) = (āij(ϵ)),
As1 = (I + S +R1)A = (âij) and As1(ϵ) = (I + S +R1)A(ϵ) = (âij(ϵ)). Then,
it can be shown that ān1 = ân1 = 0,

āij(ϵ) =

{
−ϵ if i = n and j = 1

āij otherwise

and

âij(ϵ) =


−ϵ if i = n and j = 1

ân−1,1 + ϵan−1,n if i = n− 1 and j = 1

âij otherwise.

Since A, A1 and As1 are M -matrices, it can be easily shown that A(ϵ), A1(ϵ)
and As1(ϵ) are also M -matrices for any sufficiently small ϵ > 0. Since A
is irreducible, A(ϵ) and A1(ϵ) are irreducible matrices for any ϵ > 0. Let
M(ϵ) = A(ϵ) + N , M1(ϵ) = A1(ϵ) + N1 and Ms1(ϵ) = As1(ϵ) + Ns1. Then
A(ϵ) = M(ϵ)−N , A1(ϵ) = M1(ϵ)−N1 and As1(ϵ) = Ms1(ϵ)−Ns1 are the Gauss-
Seidel splittings of A(ϵ), A1(ϵ) and As1(ϵ), respectively. Let T (ϵ) = M(ϵ)−1N ,
T1(ϵ) = M1(ϵ)

−1N1 and Ts1(ϵ) = Ms1(ϵ)
−1Ns1. Since A(ϵ) is irreducible and
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A(ϵ) = M(ϵ)−N is an M -splitting of A(ϵ), there exists a positive eigenvector x
such that T (ϵ)x = ρ(T (ϵ))x and ρ(T (ϵ)) > 0. Hence, A(ϵ)x ≥ 0, which implies
that

As1(ϵ)x ≥ A1(ϵ)x ≥ 0.

It is easy to show that Ms1(ϵ)
−1 ≥ M1(ϵ)

−1. Hence, from Lemma 2.4

∥Ts1(ϵ)∥x ≤ ∥T1(ϵ)∥x.
Since A1(ϵ) is irreducible and A1(ϵ) = M1(ϵ) −N1 is an M -splitting of A1(ϵ),
T1(ϵ) has a positive Perron vector. From Lemma 2.4, it also follows that

(12) ρ(Ts1(ϵ)) ≤ ρ(T1(ϵ)).

If ϵ → 0, then (12) implies that ρ(Ts1) ≤ ρ(T1). Hence, the proof is complete.
□

Theorem 3.4. If A = (aij) ∈ Rn×n is an M -matrix, then

ρ(T1) ≤ ρ(T ) < 1.

Proof. Since A is an irreducible M -matrix and A = M−N is a regular splitting
of A, there exists a positive eigenvector x > 0 such that Tx = ρ(T )x and
ρ(T ) > 0. Since N1 = N , M1 −M = R1A and thus

(13) M−1 −M−1
1 = M−1

1 R1AM−1.

From (13), one obtains

(14) T − T1 = M−1
1 R1AT.

Multiplying by x on both sides of (14) gives

(15) ρ(T )x− T1x = ρ(T )M−1
1 R1Ax.

Since 0 < ρ(T ) < 1, Ax ≥ 0. From (15),

(16) T1x ≤ ρ(T )x.

From Theorem 2.1 and (16), it follows that ρ(T1) ≤ ρ(T ) < 1. □
Theorem 3.5. If A = (aij) ∈ Rn×n is an M -matrix, then

ρ(Tr) ≤ ρ(T1) < 1.

Proof. We first consider the case where A1 is an irreducible matrix. Since A1

is an M -matrix and A1 = M1 − N1 is a regular splitting of A1, there exists
a positive eigenvector x > 0 such that T1x = ρ(T1)x and ρ(T1) > 0. Since
Nr = N1, Mr −M1 = (R−R1)A and thus

(17) M−1
1 −M−1

r = M−1
r (R−R1)AM−1

1 .

From (17), one obtains

(18) T1 − Tr = M−1
r (R−R1)AT1.

Multiplying by x on both sides of (18) gives

(19) ρ(T1)x− Trx = ρ(T1)M
−1
r (R−R1)Ax.
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Since (R−R1)(I +R1)
−1 = (R−R1), (19) can be transformed into

(20) ρ(T1)x− Trx = ρ(T1)M
−1
r (R−R1)A1x.

Since 0 < ρ(T1) < 1, A1x ≥ 0. Since (R−R1) ≥ 0, from (20)

(21) Trx ≤ ρ(T1)x.

From Theorem 2.1 and (21), it follows that ρ(Tr) ≤ ρ(T1) < 1.
We next consider the case where A1 is a reducible matrix. Let A(ϵ) = (aij(ϵ))

be defined by

aij(ϵ) =

{
an1 − ϵ if i = n and j = 1

aij otherwise,

where ϵ > 0. Let A1 = (I + R1)A = (āij), A1(ϵ) = (I + R1)A(ϵ) = (āij(ϵ)),
Ar = (I + R)A = (ãij) and Ar(ϵ) = (I + R)A(ϵ) = (ãij(ϵ)). Then āij(ϵ) is
defined the same as in the proof of Theorem 3.3, and

ãij(ϵ) =

{
ãn1 − ϵ if i = n and j = 1

ãij otherwise.

Since A and A1 are M -matrices, A(ϵ) and A1(ϵ) are also M -matrices for any
sufficiently small ϵ > 0. Since A is irreducible, A(ϵ) and A1(ϵ) are also irre-
ducible for any ϵ > 0. Let M1(ϵ) = A1(ϵ) + N1 and Mr(ϵ) = Ar(ϵ) + Nr.
Then A1(ϵ) = M1(ϵ) − N1 and Ar(ϵ) = Mr(ϵ) − Nr are the Gauss-Seidel
M -splittings of A1(ϵ) and Ar(ϵ), respectively. Let T1(ϵ) = M1(ϵ)

−1N1 and
Tr(ϵ) = Mr(ϵ)

−1Nr. In a similar manner as was done in the first case, one can
obtain

(22) ρ(Tr(ϵ)) ≤ ρ(T1(ϵ)).

If ϵ → 0, then (22) implies that ρ(Tr) ≤ ρ(T1). Hence, the proof is complete.
□

Combining Theorems 3.2 to 3.5, the following corollary is obtained.

Corollary 3.6. If A = (aij) ∈ Rn×n is an M -matrix, then

(a) ρ(Tr) ≤ ρ(T1) ≤ ρ(T ) < 1,
(b) ρ(Ts1) ≤ ρ(T1) ≤ ρ(T ) < 1,
(c) ρ(Ts1) ≤ ρ(Ts) ≤ ρ(T ) < 1.

4. Numerical results

In this section, we provide numerical results for the preconditioned Gauss-
Seidel methods to illustrate the theoretical results obtained in Section 3. All
test matrices A = (aij) ∈ Rn×n satisfy the assumptions given in Section 3, that
is, an1 ̸= 0, ai,i+1 ̸= 0 (1 ≤ i ≤ n− 1) and A is an M -matrix. All spectral radii
for iteration matrices of preconditioned Gauss-Seidel methods are computed
using MATLAB. All notations are defined the same as in Section 3.
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Example 4.1. Consider a 5× 5 matrix A of the form

A =


1 −0.1 −0.2 0 −0.1
0 1 −0.2 −0.1 0

−0.2 0 1 −0.1 −0.2
−0.1 −0.2 0 1 −0.1
−0.2 0 −0.1 −0.2 1

 .

Spectral radii for iteration matrices of preconditioned Gauss-Seidel methods
are listed in Table 1. From Table 1, it can be seen that all comparison results
in Section 3 are satisfied. For this matrix A, the following holds:

(23) ρ(T ) > ρ(T1) > ρ(Tr) > ρ(Ts) > ρ(Ts1).

Table 1. Spectral radii for iteration matrices of preconditioned Gauss-Seidel
methods for Example 4.1

ρ(T ) ρ(T1) ρ(Tr) ρ(Ts) ρ(Ts1)
0.2367 0.1932 0.1809 0.1625 0.1055

Example 4.2. Consider a 5× 5 matrix A of the form

A =


1 −0.2 −0.3 −0.2 −0.2

−0.1 1 −0.2 −0.3 −0.1
0 0 1 −0.1 −0.2

−0.1 0 0 1 −0.3
−0.3 0 −0.1 0 1

 .

Spectral radii for iteration matrices of preconditioned Gauss-Seidel methods
are listed in Table 2. From Table 2, it can be seen that all comparison results
in Section 3 are satisfied. For this matrix A, the following holds:

(24) ρ(T ) > ρ(Ts) > ρ(T1) > ρ(Tr) > ρ(Ts1).

Table 2. Spectral radii for iteration matrices of preconditioned Gauss-Seidel
methods for Example 4.2.

ρ(T ) ρ(T1) ρ(Tr) ρ(Ts) ρ(Ts1)
0.3594 0.2863 0.2591 0.2987 0.2251

Example 4.3. Consider a 5× 5 matrix A of the form

A =


1 −0.1 −0.4 −0.2 −0.2
0 1 −0.1 −0.4 −0.2

−0.2 0 1 −0.1 −0.6
0 −0.1 0 1 −0.8

−0.3 −0.2 −0.1 −0.3 1

 .
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Spectral radii for iteration matrices of preconditioned Gauss-Seidel methods
are listed in Table 3. From Table 3, it can be seen that all comparison results
in Section 3 are satisfied. For this matrix A, the following holds:

(25) ρ(T ) > ρ(Ts) > ρ(T1) > ρ(Ts1) > ρ(Tr).

Table 3. Spectral radii for iteration matrices of preconditioned Gauss-Seidel
methods for Example 4.3.

ρ(T ) ρ(T1) ρ(Tr) ρ(Ts) ρ(Ts1)
0.7949 0.7661 0.7209 0.7691 0.7366

Notice that ρ(Ts) < ρ(T1) and ρ(Ts) < ρ(Tr) for Example 4.1, but ρ(Ts) >
ρ(T1) and ρ(Ts) > ρ(Tr) for Examples 4.2 and 4.3. Also notice that ρ(Ts1) <
ρ(Tr) for Examples 4.1 and 4.2, but ρ(Ts1) > ρ(Tr) for Example 4.3. Hence,
it can be concluded from Examples 4.1 to 4.3 that there exist no comparison
results between ρ(Ts) and ρ(T1), between ρ(Ts) and ρ(Tr), and between ρ(Ts1)
and ρ(Tr) under the same assumptions used in Section 3.
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