• 제목/요약/키워드: precipitation sensitivity

검색결과 151건 처리시간 0.023초

현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험 (Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018)

  • 최다영;황윤정;이용희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생 (Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation)

  • 황연상;허준행;정영훈
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.209-220
    • /
    • 2011
  • 입력자료의 불확실성은 강우-유출 모의에서 중요한 불확실성 요소 중의 하나이다. 본 연구에서는 먼저 세 가지의 서로 다른 내삽 기법을 통해 계산된 강수 입력 자료 (관측값을 각 소유역의 중심점으로 내삽하여 추정한 입력자료임)들이 강우-유출 모형에 미치는 영향을 분포형 수문모형 (PRMS)을 이용하여 분석하였으며, 내삽오차를 바탕으로 발생한 입력자료를 앙상블 유량 예측에 이용하는 과정을 수문학적으로 서로 다른 두개 하천 유역에 적용하였다. 또한 Monte Carlo기법을 이용하여 수문 모형의 매개변수가 서로 다른 입력자료의 특성에 따라 변화하는 양상을 구분하여 보았다. 본 연구에서 제시된 앙상블 유량 예측방법은 기상 예측 및 기상 모형의 결과물 등의 입력자료를 이용함으로써 중/장기 유량 예측에 활용될 수 있을 것으로 판단된다.

구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험 (Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation)

  • 김아현;염성수;장동영
    • 대기
    • /
    • 제28권2호
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • 한국토양비료학회지
    • /
    • 제50권6호
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Three-dimensional numerical simulation of hydrogen-induced multi-field coupling behavior in cracked zircaloy cladding tubes

  • Xia, Zhongjia;Wang, Bingzhong;Zhang, Jingyu;Ding, Shurong;Chen, Liang;Pang, Hua;Song, Xiaoming
    • Nuclear Engineering and Technology
    • /
    • 제51권1호
    • /
    • pp.238-248
    • /
    • 2019
  • In the high-temperature and high-pressure irradiation environments, the multi-field coupling processes of hydrogen diffusion, hydride precipitation and mechanical deformation in Zircaloy cladding tubes occur. To simulate this hydrogen-induced complex behavior, a multi-field coupling method is developed, with the irradiation hardening effects and hydride-precipitation-induced expansion and hardening effects involved in the mechanical constitutive relation. The out-pile tests for a cracked cladding tube after irradiation are simulated, and the numerical results of the multi-fields at different temperatures are obtained and analyzed. The results indicate that: (1) the hydrostatic stress gradient is the fundamental factor to activate the hydrogen-induced multi-field coupling behavior excluding the temperature gradient; (2) in the local crack-tip region, hydrides will precipitate faster at the considered higher temperatures, which can be fundamentally attributed to the sensitivity of TSSP and hydrogen diffusion coefficient to temperature. The mechanism is partly explained for the enlarged velocity values of delayed hydride cracking (DHC) at high temperatures before crack arrest. This work lays a foundation for the future research on DHC.

산성우(酸性雨)에 대한 산림생태계(山林生態系)의 민감도(敏感度) 및 자정기능(自淨機能)(I) - 강우(降雨)의 산성화도(酸性化度)와 식생(植生) 활력도(活力度)(TVI)를 중심(中心)으로 - (Sensitivity and Self-purification Function of Forest Ecosystem to Acid Precipitation(I) - Acidification of Precipitation and Transformed Vegetation Index(TVI) -)

  • 이수욱;장관순
    • 한국산림과학회지
    • /
    • 제83권4호
    • /
    • pp.460-472
    • /
    • 1994
  • 본 연구는 산림생태계(山林生態系)의 산성우(酸性雨)에 대한 민감성(敏感性)과 자정능력(自淨能力)을 분석(分析) 평가(評價)하므로서 도시내 또는 인접지역에 존재하는 삼림(森林)을 생태학적(生態學的)으로 건강하게 관리(管理)할 수 있는 기초 자료를 제공하기 위하여 수행되었다. 이를 위하여 공단지역 1개소, 상업지역 4개소, 주택지역 4개소와 외곽지역 5개소에서 강우를 조사, 측정하였고, 강우조사 장소에 인접해 있는 7개 산림지역을 선정하여 토양조사를 실시하였다. 또한 Landsat TM 데이타를 이용한 변환식생지수(TVI)로 산림 지역별 식생활력도를 분석하였다. 대전지역은 여러가지 대기(大氣) 오염물질(汚染物質)에 의해 심각하게 오염되어 있었고, 강우내 이온농도의 평균은 $SO_4{^{2-}}$ 20.16mg/l, $NO_3{^-}$ 3.65mg/l, $Cl^-$ 3.09mg/l로 나타났다. 오염물질(汚染物質) 총강하량(總降下量)은 음이온의 경우 $SO_4{^{2-}}$$1.09mg/m^2/month$, $NO_3{^-}$$0.23mg/m^2/month$, $Cl^-$$0.20mg/m^2/month$이었다. 양이온의 경우는 $Ca^{2+}$$0.14mg/m^2/month$, $NH_4{^+}$$0.10mg/m^2/month$이었고 $Na^+$, $K^+$$Mg^{2+}$는 각 각 0.08, 0.07 및 $0.08mg/m^2/month$이었다. 대전지역에서 가장 오염이 심한 지역은 공단지역으로 강우내 $SO_4{^{2-}}$, $NO_3{^-}$, $Cl^-$의 농도가 각각 43.08, 3.88, 3.64ppm이었으며, 산림토양(山林土壤) 평균 pH는 4.16-4.94로 강산성(强酸性)이었다. 식생활력도(TVI)는 당산 3.11, 계족산 4.00, 보문산 4.13, 갑하산 4.18, 봉산 3.34, 식장산 4.13, 성치산 4.20으로 공단지역에 인접되어 있는 당산지역에서 식생활력도가 가장 낮게 나타났다.

  • PDF

구름미세물리 모수화 방안 내 빗방울의 특성을 정의하는 매개변수가 한반도 여름철 강수 모의에 미치는 영향 (Effects of Parameters Defining the Characteristics of Raindrops in the Cloud Microphysics Parameterization on the Simulated Summer Precipitation over the Korean Peninsula)

  • 김기병;김권일;이규원;임교선
    • 대기
    • /
    • 제34권3호
    • /
    • pp.305-317
    • /
    • 2024
  • The study examines the effects of parameters that define the characteristics of raindrops on the simulated precipitation during the summer season over Korea using the Weather Research and Forecasting (WRF) Double-Moment 6-class (WDM6) cloud microphysics scheme. Prescribed parameters, defining the characteristics of hydrometeors in the WDM6 scheme such as aR, bR, and fR in the fall velocity (VR) - diameter (DR) relationship and shape parameter (𝜇R) in the number concentration (NR) - DR relationship, presents different values compared to the observed data from Two-Dimensional Video Disdrometer (2DVD) at Boseong standard meteorological observatory during 2018~2019. Three experiments were designed for the heavy rainfall event on August 8, 2022 using WRF version 4.3. These include the control (CNTL) experiment with original parameters in the WDM6 scheme; the MUR experiment, adopting the 50th percentile observation value for 𝜇R; and the MEDI experiment, which uses the same 𝜇R as MUR, but also includes fitted values for aR, bR, and fR from the 50th percentile of the observed VR - DR relationship. Both sensitivity experiments show improved precipitation simulation compared to the CNTL by reducing the bias and increasing the probability of detection and equitable threat scores. In these experiments, the raindrop mixing ratio increases and its number concentration decreases in the lower atmosphere. The microphysics budget analysis shows that the increase in the rain mixing ratio is due to enhanced source processes such as graupel melting, vapor condensation, and accretion between cloud water and rain. Our study also emphasizes that applying the solely observed 𝜇R produces more positive impact in the precipitation simulation.

지역적 민감도 분석을 이용하여 계절성을 고려한 수문 모형 보정 기법 개발 (A Development of Hydrological Model Calibration Technique Considering Seasonality via Regional Sensitivity Analysis)

  • 이예린;유재웅;김경탁;권현한
    • 대한토목학회논문집
    • /
    • 제43권3호
    • /
    • pp.337-352
    • /
    • 2023
  • 일반적으로 강우-유출모형의 매개변수 최적화는 가용 자료 전체를 대상으로 수행하여 고유의 매개변수 집합을 활용한다. 그러나, 계절에 따른 강수량의 편차가 큰 국내의 기후 특성과 더불어 기후변화로 인하여 계절성에 따른 편차 및 변동성이 증가할 것으로 전망되고 있어, 물 수요자들에 대한 안정적인 공급을 위한 장기간의 계획에서 계절성을 반영한 매개변수 추정은 효율적인 물배분에 중요한 요소라 할 수 있다. 본 연구에서는 기후특성에 따른 강우-유출모형의 변동성을 분석하기 위하여 소양강댐 유역을 대상으로 GR4J 강우-유출모형을 활용한 지역적 민감도 분석을 수행하였으며, 산출된 민감도 분석 결과와 기상자료를 결합하여 SOM을 활용해 군집화하였다. 이를 통해 계절 분리를 수행하고 각 계절의 특징을 분석하여 강우-유출모형의 보정 기법을 개발하였으며, 통계적 지표를 이용하여 성능을 평가하였다. 결과적으로 비교적 유량이 적은 Cold 기간의 모형 성능이 개선되는 것을 확인할 수 있었다. 이는 몬순기후 등 강수편차가 큰 지역을 대상으로 수문모형의 성능 및 예측도를 높일 수 있을 것으로 판단된다.

NORM 폐기물 매립 시 NDD 분석을 활용한 부지 내 주요 피폭인자 도출 (Derivation of On-site Major Exposure Factor using NDD Analysis when Landfilling NORM Waste)

  • 임지현;이신동;손건우;김광표
    • 방사선산업학회지
    • /
    • 제18권3호
    • /
    • pp.183-193
    • /
    • 2024
  • As part of the social response to the radon bed incident in 2018, the Nuclear Safety and Security Commission took measures to collect and dispose of all radon beds. The Waste Management Act provides landfill disposal as one of the disposal methods for natural radioactive product waste, which is one of the NORM wastes. When NORM wastes are landfilled, workers and the public at the landfill site are exposed to radiation through various pathways, such as leaching of radionuclides through soil and groundwater, and multiple exposure factors are involved simultaneously. In order to improve the reliability of radiological impact assessment, the values of main exposure factors should be selected more accurately. Therefore, before developing the main exposure factors for site characteristics, it is necessary to prioritize main exposure factors reflecting domestic characteristics of NORM waste landfills. Therefore, in this study, the main exposure factors for NORM waste landfill were derived using NDD analysis. To derive the main exposure factors, the analysis tool was first selected as RESRAD-ONSITE computer code, and the exposure scenarios were mainly selected as a resident farmer and suburban resident scenario, recreation scenario, and industrial worker scenario. Then, the priority 1 and 2 factors were selected for sensitivity analysis, and a Korean standard model was established to reflect Korean characteristics. Finally, the sensitivity analysis was conducted through NDD, and the main exposure factors were derived based on this. In the resident farmer scenario, the contaminated zone distribution coefficients of 226Ra, 210Pb, 232Th, 228Ra, 234U, and 238U, as well as precipitation and evapotranspiration factors, were derived as the main exposure factors. In the suburban resident scenario, the contaminated zone distribution coefficients of 226Ra, 210Pb, 232Th, 228Ra, 234U, and 238U, as well as precipitation and evapotranspiration coefficients, were derived as the main exposure factors. In the recreation scenario, the contaminated zone distribution coefficient of 232Th was derived as the main exposure factor. For the industrial worker scenario, the erosion rate was derived as the main exposure factor. The main exposure factors for each scenario were analyzed to be different depending on the scenario characteristics. The results of this study can be utilized as a basis for radiological environmental impact assessment of NORM waste landfill in Korea.

Development of a Blocking ELISA for Measuring Rabies Virus-specific Antibodies in Animals

  • Yang, Dong-Kun;Kim, Ha-Hyun;Ryu, Jieun;Gee, Mi-ryun;Cho, In-Soo
    • 한국미생물·생명공학회지
    • /
    • 제46권3호
    • /
    • pp.269-276
    • /
    • 2018
  • Rabies virus (RABV)-specific antibodies in animals and humans are measured using standard methods such as fluorescent antibody virus neutralization (FAVN) tests and rapid fluorescent focus inhibition tests, which are based on cell culture systems. An alternative assay that is safe and easy to perform is required for rapid sero-surveillance following mass vaccination of animals. Two purified monoclonal antibodies (4G36 and B2H17) against RABV were selected as capture and detection antibodies, respectively. A genetically modified RABV, the ERAGS strain, was propagated and concentrated by polyethylene glycol precipitation. Optimal conditions for the RABV antigen, antibodies, and serum dilution for a blocking enzymelinked immune sorbent assay (B-ELISA) were established. We evaluated the sensitivity, specificity, and accuracy of the B-ELISA using serum samples from 138 dogs, 71 raccoon dogs, and 25 cats. The B-ELISA showed a diagnostic sensitivity of 95.8-96.3%, specificity of 91.3-100%, and accuracy of 96.0-97.2% compared to the FAVN test. These results suggest that the B-ELISA is useful for sero-surveillance of RABV in dogs, raccoon dogs, and cats.