• Title/Summary/Keyword: precast wall

Search Result 145, Processing Time 0.021 seconds

Cost Analysis of the Structural Work of Green Frame

  • Joo, Jin-Kyu;Kim, Sun-Kuk;Lee, Goon-Jae;Lim, Chae-Yeon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.4
    • /
    • pp.401-414
    • /
    • 2012
  • The adoption of Green Frame is expected to provide economic benefits, since construction costs are reduced by the in-situ production of precast concrete column and beam. The cost reduction can ultimately be realized by saving transportation costs and the overhead and profit of PC plants. The cost structure of Green Frame, which is built up using composite precast concrete members, is similar to that of a bearing-wall structure, but the difference in construction process has resulted in some cost differences for a few items. In particular, production and installation is the principal work involved in Green Frame made by precast concrete members, while form and concrete work is the principal work for a bearing-wall structure. As such, the rental time and fee for a tower crane should be compared through time analysis. To verify reliability, this study focused on developed residential projects to estimate the construction costs. Through this analysis, it was found that the costs of Green Frame were 1.57% lower than the costs of bearing-wall structure. The results of this study will help in the development of a management plan for the structural work of Green Frame.

Ductility Demand of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 연성도 해석)

  • 홍성걸;김영욱
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.29-40
    • /
    • 1999
  • This study presents a simplifled calculation method for required ductility of coupling beams in precast coupled shear walls at preliminary seismic design stages. Deflection of precast coupled shear walls based on a continuum approach is combined with inelastic gap opening of horizontal connection of panels to provide a relationship between the system-level ductility and the element-level ductility in a precast coupled shear wall. The equation proposed herein for ductility requirement for coupling beams shows that higher stiffness and lower strength of coupling beams result in high ductility reuqirement. The equation also shows that the ductility requirement is proportional to the degree of gap opening of the story in question. However, the coupling beam ductility in higher stories are not affected by gap openings of horizontal connections of panel.

  • PDF

In-situ Production Analysis of Composite Precast Concrete Members of Green Frame

  • Lim, Chae-Yeon;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.501-514
    • /
    • 2011
  • Recently, there have been many cases in which the difficulty of repair and replacement of principal elements in the bearing wall structure for apartment buildings, which is a major part of apartment buildings in Korea, has led to the reconstruction of buildings rather than their remodeling. To address this problem, the Korea government now allows a floor area ratio of up to 20 %, and has relaxed the building height limits to encourage the use of a rahmen structure instead of a bearing wall structure. However, since reinforced concrete rahmen structures have many problems, including higher floor height and greater construction cost, a great deal of research into rahmen composite precast concrete structures have been conducted. Green Frame, one of the developed prototypes, is expected to provide economic benefits through in-situ production for precast concrete column and beam. For in-situ production of composite precast concrete members, a detailed plan for production, curing, and installation is needed. However, it needs to be confirmed that the space is sufficient to produce the precast concrete members on-site before planning those activities. Therefore, this study proposes in-situ production analysis of composite precast concrete members of Green Frame with the evaluation of structural safety and available area on the parking structure. The result of this study shows that the in-situ production of precast concrete members is possible through a case study.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Modeling of Precast Concrete Shear Walls BIM Program (BIM 프로그램을 이용한 프리캐스트 콘크리트 전단벽의 모델링)

  • Mun, Ju-Hyun;Yoon, Hyun-Sub;Kim, Jong-Won;Eom, Byung-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.451-462
    • /
    • 2022
  • The objective of the study is to establish a BIM modeling of precast concrete(PC) shear wall with various wall-to-base connections. The family library of PC shear wall was established in BIM program using component function in a IFC(Industry foundation classes) file format and SketchUp program. From the BIM program, the amounts of concrete, reinforcing bars and steel materials as well as the interference of arranged reinforcing bars can be accurately evaluated in the PC shear walls with spliced sleeves, bolt, or welding plate connection methods. Although the additional metallic materials such as steel plates, bolts, and nuts were used in the PC shear walls with welding plate connection method, their amounts of materials, economic efficiency, and environmental impact were similar to those with spliced sleeve connection. Consequently, the bolt or welding connection is a highly applicable method as wall-to-base connection of PC shear walls, and it was a more useful method than spliced sleeve method, particularly considering the constructability.

Evaluation on Structural Performance of Joint with Asymmetric Ribbed Connection Details used in Precast Bridge Deck (비대칭 격벽단면을 갖는 프리캐스트 바닥판 이음부의 구조성능 평가)

  • Chung, Chul-Hun;Byun, Tae-Kwan;Kim, In-Gyu;Shin, Dong-Ho;Lee, Han-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • A precast concrete deck system is considered an effective alternative in terms of its rapid construction and quality assurance than cast-in-place concrete deck. In precast concrete deck system, structural performance and serviceability are mostly determined by the connection methods between the precast decks. This research proposes more improved precast deck system with asymmetric ribbed connection details improving the disadvantage of previous precast deck system such as difficulties in assembling precast decks. And in this precast deck system, a separate form is not required at the site because partition wall of the precast decks serves as a form when placing non-shrinkage mortar in the connection part of the precast decks. Therefore, rapid construction is possible. Flexural performance is verified through load tests considering main parameter such as rib length in the precast deck connection. From the test results, it can be inferred that the development of the rebar and prevention of adhesion failure in the partition wall of the precast deck system are important factors in securing the flexural performance. Although the structural performance of the precast deck system with asymmetric connection details is gradually reduced as the rib length in the precast deck connection increases, the proposed precast deck system shows sufficient flexural performance and can be applied to the connection part of precast decks effectively.

A Basic Study on the Arrangement of In-situ Production Module of the Composite PC Members (합성 PC 부재 현장생산배치에 관한 기초 연구)

  • Lee, Goon-Jae;Joo, Jin-Kyu;Lee, Sung-Ho;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.29-30
    • /
    • 2011
  • A Green Frame is a composite Rahmen precast concrete structure that utilizes the advantages of the steel frame and the reinforced concrete. Compared to bearing wall structure, the precast concrete structure may raise construction cost If the precast concrete members are produced in plant. Thus, if the precast concrete members can be produced in site, the cost-effectiveness and quality shall be increased. Various site conditions must be considered and reviewed to ensure a space for the in-situ production. Therefore, this study focuses on the basic study on the arrangement of in-situ production module of composite precast concrete members.

  • PDF

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.

A Experimental Study on Structural Behavior of Hybrid Precast Concrete Panel (복합 프리캐스트 콘크리트 패널의 구조 거동에 대한 실험적 연구)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.9
    • /
    • pp.11-18
    • /
    • 2018
  • As the height of the modular buildings increases, their stability becomes more and more dependent on the core. All traditional construction methods in structural concrete and steel can be utilized for cores in modular buildings but a core system with dry connection is more desirable to complete a greater degree of factory finish and faster erection of modular buildings. In order to do that, the hybrid PC(precast concrete) panel, which has a pair of C-shaped steel beams combined at the top and bottom of a concrete wall, was developed, In this study the cyclic lateral loading test on the hybrid PC panel is carried out and the panel configurations are examined to enhance the structural performance in comparison with the RC wall. Experimental results show that the strength of hybrid PC panel is about 70% of thar ot RC wall and the anchorage of vertical reinforcing bar welded to C-shaped steel beam needs to be improved.

Behavior of Precast Concrete Shear Walls with C-Type Connections (C형 접합부를 이용한 프리캐스트 콘크리트 전단벽의 거동)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.461-472
    • /
    • 2010
  • This paper investigates the behavior of precast concrete (PC) shear walls with a new vertical connections for a fast remodeling construction. The C-type vertical connections for the PC wall systems are proposed for transfer of bending moment between top and bottom walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing action. The proposed vertical connections allows easy fabrication thanks to slots at the edges of wall in opposite directions. The plane PC wall systems subject to lateral load are compared with ordinary wall systems by investigating the effects of connection on the stiffness, strength, ductility, and failure modes of whole systems. The load-displacement relationship and influence of premature failure of connections are examined. The experimental test showed that the longitudinal reinforcing steel bars placed at the edges of walls yielded first and the ultimate deformation were terminated due to premature failure of connections. The diagonal reinforcements for efficient shear transfer in the walls were not effective. The strength and deformation obtained through the section analysis were generally in agreement with the experimental data, and indicated that. Gap opening contributed to the deformation behavior more than any other factors.