• Title/Summary/Keyword: precast hollow core slabs

Search Result 18, Processing Time 0.025 seconds

Modelling of headed stud in steel-precast composite beams

  • El-Lobody, Ehab;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.355-378
    • /
    • 2002
  • Use of composite steel construction with precast hollow core slabs is now popular in the UK, but the present knowledge in shear capacity of the headed shear studs for this type of composite construction is very limited. Currently, all the information is based on the results obtained from experimental push-off tests. A finite element model to simulate the behaviour of headed stud shear connection in composite beam with precast hollow core slabs is described. The model is based on finite element method and takes into account the linear and non-linear behaviour of all the materials. The model has been validated against the test results, for which the accuracy of the model used is demonstrated. Parametric studies showing the effect of the change in transverse gap size, transverse reinforcement diameter and in-situ concrete strength on the shear connection capacity are presented.

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

Evaluation of Shear Strength of Precast-prestressed Hollow Core Slabs Based on Experiments (실험을 통한 프리캐스트-프리스트레스트 중공슬래브의 전단강도)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kang, Dong-Hoon;Im, Ju-Hyeuk;Kim, Young Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.635-642
    • /
    • 2014
  • The weight of concrete could be reduced by using hollow core slabs instead of heavy solid slabs, leading to cost reduction. The long span be also achieved by introducing prestress in hollow core slabs. but the evaluation of shear strength of precast-prestressed hollow core slabs are needed because the cross section is reduced in web and arranging shear reinforcement is not possible. In this study, the shear strength of precast-prestressed hollow core slabs were evaluated based on experimental tests. For this purpose, six full scale specimens were made and tested. The shear strength of the specimens were compared with those evaluated from current design provision(EC2 ACI, EN1168 and AASHTO).

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

Flexural Tests of High Performance Hollow Core Slabs (고성능 중공슬래브의 휨 실험)

  • 박현석;김인규;조영모;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.167-172
    • /
    • 2001
  • Hollow core slabs generally have not been used for a bridge slab or a parking in Korea. In this study, high performance hollow core slabs, which has been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were reinforced with 10-l/2 inch dia-strands at the lower of slab and 4-l/2 inch dia-strands at tile upper of slab, and cast with 80mm deep topping concrete. Those tested hollow core slabs showed ductile failure behaviors which were conform to the current Ultimate Strength Design Method for a span of l0m up to the live load of 1, 000 kg/$m^2$.

  • PDF

Experimental and analytical study on prestressed concrete hollow slabs with asymmetric boundary conditions

  • Ma, Haiying;Lai, Minghui;Xia, Ye
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.59-68
    • /
    • 2022
  • Prestressed prefabricated hollow core concrete slabs with spans of 5 m and 10 m are commonly used since last century and still in service due to the advantage of construction convenience and durability. However, the end slabs are regularly subjected to cracks at the top and fail with brittleness due to the asymmetric boundary conditions. To better maintain such widely used type of hollow core slabs, the effect of asymmetric constraint in the end slabs are systematically studied through detailed nonlinear finite element analyses and experimental data. Experimental tests of slabs with four prestressed tendons and seven prestressed tendons with different boundary conditions were conducted. Results observe three failure modes of the slabs: the bending failure mode, shear and torsion failure mode, and transverse failure mode. Detailed nonlinear finite element models are developed to well match the failure modes and to reveal potential damage scenarios with asymmetric boundary conditions. Recommendations regarding ultimate capacity of the slabs with asymmetric boundary conditions are made to ensure a safe and rational design of prestressed concrete hollow slabs for short span bridges.

Shear Performance Evaluation of the Joint between Hollow Core Slabs (Hollow core 슬래브 간 접합부의 전단저항성능 평가)

  • Hong, Geon-Ho;Baek, Jong-Sam;Park, Hong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.94-101
    • /
    • 2010
  • Recently, the interest of precast concrete is increased for rapid construction in construction fields. Experimental study about the shear performance of the joint between hollow core slabs which have internal core to reduce their weight was performed. Main test variables were thickness of the topping concrete and existence of the wiremesh. Total 8 specimens including 4 in-plane shear and 4 out of plane shear were tested. Test results were analyzed in terms of cracking load, failure load, failure aspect, stiffness and ductility, and compared its design load to develop optimum design details. Test results indicated that the shear performance of the non-shrinkage mortar specimen was similar to that of 30mm thickness topping concrete specimen, and the effect of wiremesh reinforcement did not affect the failure load or stiffness of the specimens but the increase of ductility. And this paper presents the comparison results of the test results and design load to provide the optimum detail of the joint design between the hollow core slabs.

Flexural Behaviour of Encased Composite Beam with Precast Hollow Core Slabs and Channels (속빈 PC 슬래브와 채널을 사용한 매입형 합성보의 휨 거동)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.493-504
    • /
    • 2008
  • This paper deals with the experimental analysis of the flexural behaviour of encased composite beams with hollow core slabs and channels. The shear force between steel beams and hollow core slabs are transferred by channels. Three full-scale specimens were constructed and tested with different steel beam heights, which were compared with those of previous studies. Based on observation of the experiments, the encased composite beams exhibited full shear connection behaviour without any other shear connectors due to their inherent mechanical and chemical bond stress. Experimental results show a behaviour similar to steel-concrete composite beams with classical connectors: elastic and yield domains, great ductility, flexural failure mode (plastic hinge), low relative movement at steel-concrete interface and all specimens failed in a very ductile manner. Consequently, this study enables the validation of the proposed connection device under static loading and shows that it meets modern structural requirements.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Parametric study on the structural behaviour of composite slim floors with hollow-core slabs

  • Spavier, Patricia T.S.;Kataoka, Marcela N.;El Debs, Ana Lucia H.C.
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.497-506
    • /
    • 2021
  • Steel-concrete composite structures and precast concrete elements have a common prefabrication process and allow fast construction. The use of hollow-core slabs associated with composite floors can be advantageous. However, there are few studies on the subject, impeding the application of such systems. In this paper, a numerical model representing the considered system using the FE (finite element)-based software DIANA is developed. The results of an experimental test were also presented in Souza (2016) and were used to validate the model. Comparisons between the numerical and test results were performed in terms of the load versus displacement, load versus slip, and load versus strain curves, showing satisfactory agreement. In addition, a wide parametric study was performed, evaluating the influence of several parameters on the behaviour of the composite system: The strength of the steel beam, thickness of the web, thickness and width of the bottom flange of the steel beam and concrete cover thickness on top of the beam. The results indicated a great influence of the steel strength and the thickness of the bottom flange of the steel beam on the capacity of the composite floor. The remaining parameters had limited influences on the results.