• Title/Summary/Keyword: pre-trained model

Search Result 295, Processing Time 0.027 seconds

Pre-trained Language Model for Table Question and Answering (표 질의응답을 위한 언어 모델 학습 및 데이터 구축)

  • Sim, Myoseop;Jun, Changwook;Choi, Jooyoung;Kim, Hyun;Jang, Hansol;Min, Kyungkoo
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.335-339
    • /
    • 2021
  • 기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.

  • PDF

Korean Pre-trained Model KE-T5-based Automatic Paper Summarization (한국어 사전학습 모델 KE-T5 기반 자동 논문 요약)

  • Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.505-506
    • /
    • 2021
  • 최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.

  • PDF

Comparative study of legal document summary method based on pre-trained model (사전학습 기반의 법률문서 요약 방법 비교연구)

  • Kim, EuiSoon;Lim, HeuiSeok
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.614-617
    • /
    • 2021
  • 법률 문서는 일반 사용자가 이해하기 어려운 용어로 이루어져 있고 특히 장문의 문서가 많아 법률시스템에 종사하는 종사자들 또한 많은 양의 문서를 읽기가 어려운 현실이다. 이에 문서 요약 방법중 딥러닝 기반의 사전학습 모델을 적용한 추출요약기반, 생성요약 방법론과 딥러닝 이전의 핵심문장 추출 방법론을 비교하여 법률용어의 요약성능에 대한 비교 평가를 수행하고자 하며 추후 연구과제로 법률문서에 특화된 요약 모델을 만들어보고자 한다.

Image Scene Classification of Multiclass (다중 클래스의 이미지 장면 분류)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.551-552
    • /
    • 2021
  • In this paper, we present a multi-class image scene classification method based on transformation learning. ImageNet classifies multiple classes of natural scene images by relying on pre-trained network models on large image datasets. In the experiment, we obtained excellent results by classifying the optimized ResNet model on Kaggle's Intel Image Classification data set.

  • PDF

Effective Payload-based Anomaly Detection Method Using Pre-trained Model (사전학습 모델을 활용한 효과적인 Http Payload 이상 탐지 방법)

  • LEE, Unggi;KIM, Wonchul
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.228-230
    • /
    • 2022
  • 딥러닝 기반의 인공지능 기술이 발달함에 따라 이상 탐지 방법에도 딥러닝이 적용되었다. 네트워크 트래픽으로부터 요약 및 집계된 Feature 를 학습하는 방법과 Packet 자체를 학습하는 등의 방법이 있었다. 그러나 모두 정보의 제한적으로 사용한다는 단점이 있었다. 본 연구에서는 Http Request에 대한 사전학습 기반의 효과적인 이상 탐지 방법을 제안한다. 사전학습에 고려되는 토큰화 방법, Padding 방법, Feature 결합 방법, Feature 선택 방법과 전이학습 시 Numerical 정보를 추가하는 방법을 소개하고 각 실험을 통해 최적의 방법을 제안한다.

Proposal of Git's commit message classification model using GPT (GPT를 이용한 Git의 커밋메시지 분류모델 제안)

  • Ji-Hoon Choi;Jae-Woong Kim;Youn-Yeoul Lee;Yi-Geun Chae;Hyeon-Ho Seo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.81-83
    • /
    • 2023
  • GIT의 커밋 메시지를 소프트웨어 유지보수 활동 세 가지로 분류하는 연구를 분석하고 정확도를 높일 수 있는 모델들을 분석하였고 관련 모델 중 커밋메시지와 변경된 소스를 같이 활용하는 연구들은 변경된 소스를 분석하기 위해 도구들을 대부분 활용하는데 대부분 특정 언어만 분류할 수 있는 한계가 있다. 본 논문에서는 소스 변경 데이터를 추출할 때 언어의 제약을 없애기 위해 GPT를 이용해 변경된 소스의 요약을 추출하는 과정을 추가함으로써 언어 제약의 한계를 극복할 수 있는 개선된 모델에 관한 연구를 진행하였다. 향후 본 연구 모델의 구현 및 검증을 진행하고 이를 이용해 프로젝트 진행에 활용할 수 있는 솔루션 개발 연구까지 확정해 나갈 예정이다.

  • PDF

DAKS: A Korean Sentence Classification Framework with Efficient Parameter Learning based on Domain Adaptation (DAKS: 도메인 적응 기반 효율적인 매개변수 학습이 가능한 한국어 문장 분류 프레임워크)

  • Jaemin Kim;Dong-Kyu Chae
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.678-680
    • /
    • 2023
  • 본 논문은 정확하면서도 효율적인 한국어 문장 분류 기법에 대해서 논의한다. 최근 자연어처리 분야에서 사전 학습된 언어 모델(Pre-trained Language Models, PLM)은 미세조정(fine-tuning)을 통해 문장 분류 하위 작업(downstream task)에서 성공적인 결과를 보여주고 있다. 하지만, 이러한 미세조정은 하위 작업이 바뀔 때마다 사전 학습된 언어 모델의 전체 매개변수(model parameters)를 학습해야 한다는 단점을 갖고 있다. 본 논문에서는 이러한 문제를 해결할 수 있도록 도메인 적응기(domain adapter)를 활용한 한국어 문장 분류 프레임워크인 DAKS(Domain Adaptation-based Korean Sentence classification framework)를 제안한다. 해당 프레임워크는 학습되는 매개변수의 규모를 크게 줄임으로써 효율적인 성능을 보였다. 또한 문장 분류를 위한 특징(feature)으로써 한국어 사전학습 모델(KLUE-RoBERTa)의 다양한 은닉 계층 별 은닉 상태(hidden states)를 활용하였을 때 결과를 비교 분석하고 가장 적합한 은닉 계층을 제시한다.

Korean Generation-based Dialogue State Tracking using Korean Token-Free Pre-trained Language Model KeByT5 (한국어 토큰-프리 사전학습 언어모델 KeByT5를 이용한 한국어 생성 기반 대화 상태 추적)

  • Kiyoung Lee;Jonghun Shin;Soojong Lim;Ohwoog Kwon
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.644-647
    • /
    • 2023
  • 대화 시스템에서 대화 상태 추적은 사용자와의 대화를 진행하면서 사용자의 의도를 파악하여 시스템 응답을 결정하는데 있어서 중요한 역할을 수행한다. 특히 목적지향(task-oriented) 대화에서 사용자 목표(goal)를 만족시키기 위해서 대화 상태 추적은 필수적이다. 최근 다양한 자연어처리 다운스트림 태스크들이 사전학습 언어모델을 백본 네트워크로 사용하고 그 위에서 해당 도메인 태스크를 미세조정하는 방식으로 좋은 성능을 내고 있다. 본 논문에서는 한국어 토큰-프리(token-free) 사전학습 언어모델인 KeByT5B 사용하고 종단형(end-to-end) seq2seq 방식으로 미세조정을 수행한 한국어 생성 기반 대화 상태 추적 모델을 소개하고 관련하여 수행한 실험 결과를 설명한다.

  • PDF

KF-DeBERTa: Financial Domain-specific Pre-trained Language Model (KF-DeBERTa: 금융 도메인 특화 사전학습 언어모델)

  • Eunkwang Jeon;Jungdae Kim;Minsang Song;Joohyun Ryu
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.143-148
    • /
    • 2023
  • 본 논문에서는 금융 도메인 특화 사전학습 언어모델인 KF-DeBERTa(Korean Finance DeBERTa)를 제안한다. KF-DeBERTa는 대규모의 금융 말뭉치를 기반으로 학습하였으며, Transformer 아키텍처와 DeBERTa의 특징을 기반으로 구성되었다. 범용 및 금융 도메인에 대한 평가에서 KF-DeBERTa는 기존 언어모델들에 비해 상당히 높은 성능을 보였다. 특히, 금융 도메인에서의 성능은 매우 두드러졌으며, 범용 도메인에서도 다른 모델들을 상회하는 성능을 나타냈다. KF-DeBERTa는 모델 크기 대비 높은 성능 효율성을 보여주었고, 앞으로 금융 도메인에서의 활용도가 기대된다.

  • PDF

A Comparative Study on the Korean Text Extractive Summarization using Pre-trained Language Model (사전 학습 언어 모델을 이용한 한국어 문서 추출 요약 비교 분석)

  • Young-Rae Cho;Kwang-Hyun Baek;Min-Ji Park;Byung Hoon Park;Sooyeon Shin
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.518-521
    • /
    • 2023
  • 오늘날 과도한 정보의 양 속에서 디지털 문서 내 중요한 정보를 효율적으로 획득하는 것은 비용 효율의 측면에서 중요한 요구사항이 되었다. 문서 요약은 자연어 처리의 한 분야로서 원본 문서의 핵심적인 정보를 유지하는 동시에 중요 문장을 추출 또는 생성하는 작업이다. 이 중 추출요약은 정보의 손실 및 잘못된 정보 생성의 가능성을 줄이고 요약 가능하다. 그러나 여러 토크나이저와 임베딩 모델 중 적절한 활용을 위한 비교가 미진한 상황이다. 본 논문에서는 한국어 사전학습된 추출 요약 언어 모델들을 선정하고 추가 데이터셋으로 학습하고 성능 평가를 실시하여 그 결과를 비교 분석하였다.