• Title/Summary/Keyword: pre-RC

Search Result 139, Processing Time 0.021 seconds

Environmental Friendly Connection of Composite Beams and Columns (친환경 층고 절감형 합성보의 보-기둥 접합부 상세 및 시공성 연구)

  • Hong, Won-Kee;Kim, Jin-Min;Park, Seon-Chee;Lim, Sun-Jae
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.113-118
    • /
    • 2007
  • The composite beam adopted in the study was designed to reduce the floor height as well as to embed the top flange of steel frame into the slab that will enable to avoid applying the fire-resistant coating and to unify the joint method with a steel frame-type. As the steel frame and bottom concrete of the beam is pre-fabricated at the factory it could reduce the overall schedule at the jobsite. Applying such composite beam system to the work is expected to provide the efficient and enhanced performance, given the current tendency of the building construction that tends to be getting higher, larger and dense. The study focused on combining the composite beam with various column systems in a bid to propose the details thereof. A desirable composite girder can be adopted depending on site conditions through the evaluation of various beam and jointing approaches. Among the column systems applied to the study are steel column, SRC column, RC-PC column and RC column. The ways of combining with the columns addressed in the study were categorized into the rigid joint, pin joint, steel frame joint and bracket type joint. Besides, the instruction for site fabrication of beam-column was added in an effort to help set up the site fabrication procedures.

Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams (손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강)

  • Lee, Swoo-Heon;Lee, Hee-Du;Park, Seong-Geun;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

Flexural Behaviors of Reinforced Concrete Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨 거동)

  • Kim, Seong-Do
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.227-234
    • /
    • 2010
  • To investigate the flexural behavior of RC beams strengthened with carbon fiber sheets, 1 control beam and 8 strengthened beams(4 NU-beams without U-shaped band and 4 U-beams with U-shaped band) are tested. The variables of experiment are composed of the number of carbon fiber sheets and the existence of U-shaped band, etc. The experimental results showed that the strengthening system with U-shaped band controls the premature debonding and provides a more ductile failure mode than the strengthening system without U-shaped band. It can be found from the load-deflection curves that as the number of fiber sheets is increased, the maximum strength and the flexural rigidity is increased. The experimental results are compared with the analytical results of nonlinear flexural behaviors for strengthened RC beam. The proposed analytical method for strengthened beams is proved to be accurate by an experimental investigation of load-deflection curve, yield load, maximum load, and flexural rigidities in the pre- and post-yielding stages.

Predicting Carbonation Progress of Carbonation Repaired RC Structures Repair (탄산화가 진행된 기존 RC구조물의 보수 공법 적용 후 탄산화 진행 예측)

  • Lee, Hyung-Min;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.235-243
    • /
    • 2017
  • Carbonation of concrete is being occurred due to interaction of atmospheric carbon dioxide with hydroxides. Reinforce concrete (RC) structure is getting collapse or accident due to corrosion of embedded steel rebar. The maintenance of reinforced concrete structure recently has the attention of researchers regarding durability of structure and its importance day by day is increasing. In order to study the carbonation progress of pre-repaired concrete, present study was carried out to measure the carbonation velocity for different repair materials up to 100% of carbonation. The obtained results have predicted the carbonation progress of repair materials in service condition. These results have been verified by FEM and FDM analysis. As a result, the carbonation depth can be predicted by using the carbonation prediction formula after the repair, and the analytical and the experimental values are almost similar when the initial $Ca(OH)_2$ concentration is assumed to be 40%.

Structural Behavior of RC Roof Slab under Cyclic Temperature Load (반복 일사하중에 대한 철근콘크리트 지붕슬래브의 구조적 거동)

  • Seo, Soo-Yeon;Yoon, Seung-Joe;Cho, Yong-Man;Choi, Gi-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • A variation of temperature acting on a RC roof slab causes a change of stress in concrete since it expands during summer and is compressed during winter. This behavior repeats annually and makes an affection to the structural capacity of member for both serviceability and ultimate level. In this paper, a cyclic temperature loading variation is calculated by analyzing the weather data of Korea for 20 years. In addition, an experimental work is planned to find the long term effect of temperature variation. Six RC slab are made with same dimension. Test parameters are loading duration (10, 20, 30 year) and whether it has pre-damage or not. Observation of stiffness variations according to cyclic loading period shows that the serious stiffness drop happens after 10 year's cyclic loading at summer while after 30 year's loading at winter. From the fracture test about slabs damaged by long term cyclic loading, however, the capacity of member such as initial stiffness and maximum strength were not changed except yield strength according to the period of long term cyclic loading. The yield strength tends to decrease after 20 year's cyclic loading.

The Study on the Effect of Plasma Pre-treatment on the Dyeing Properties and the Handle in the Environment Friendly Enzyme Finishing (친환경 효소가공에서 플라즈마 전처리가 염색성과 태에 미치는 영향)

  • Kim, Ji-Hyun
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.10 no.3
    • /
    • pp.173-180
    • /
    • 2008
  • Cotton, wool, cotton/wool blended (80:20) and tencel fabrics were treated with low temperature oxygen plasma, enzymes (cellulase or protease), or oxygen plasma-enzyme and they were examined for dyeing and handling properties for environment friendly finishing. The appropriate conditions for cellulase treatment were enzyme concentration of 3g/l, pH of 5, and $60^{\circ}C$ for one hour, and for protease treatment were enzyme concentration of 4g/l, pH of 8, and $60^{\circ}C$ for one hour. The equilibrium uptake of a direct dye on cotton changed with plasma treatment and plasma-cellulase treatment, and the rate of dyeing slightly decreased. When wool was dyed with acid dye, the equilibrium dye uptake did not change with plasma, protease treatment nor plasma-protease treatment, however, the rate of dyeing had increased with plasma-protease treatment. From these results, it is assumed that plasma attacks the surface of the fiber, and enzyme mainly affects the inner part of the fiber. Plasma treatment did not affect mechanical properties related to the handling of fabrics. The handling test showed increased extension at maxmum load(EM), tensile energy(WT) with decreased tensile resilience (RT), and the fabrics became softer but resilience decreased slightly with enzyme treatment. The bending recidity(B), hysteresis of bending moment(2HB), and hysteresis of shear force at five degrees(2HG5) decreased, however, shear stiffness(G) increased. I knew the plasma pre-treatment made fabrics softer with lower koshi(stiffness). The handling of plasma pre-treated fabrics was better than that of enzyme-treated fabrics. When we pre-treated fabrics, the handling test showed decreased coefficient of friction(MIU), geometrical roughness(SMD), while the surface of fabrics became smoother and numeri increased. Even though compression resilience(RC) increased, fukurami(bulky property) and compressive elasticity, decreased due to the linearity of compression-thickness curve(LC) and compression energy(WC).

  • PDF

Identification and characterization of a rice MCM2 homologue required for DNA replycation

  • Cho, Jae-Han;Kim, Ho-Bang;Kim, Hyung-Sae;Choi, Sang-Bong
    • BMB Reports
    • /
    • v.41 no.8
    • /
    • pp.581-586
    • /
    • 2008
  • The pre-replication complex (pre-RC), including the core hexameric MCM2-7 complex, ensures that the eukaryotic genome is replicated only once per cell division cycle. In this study, we identified a rice $\underline{m}ini\underline{c}hromosome$ $\underline{m}aintenance$ (MCM) homologue (OsMCM2) that functionally complemented fission yeast MCM2 (CDC19) mutants. We found OsMCM2 transcript expression in roots, leaves, and seeds, although expression levels differed slightly among the organs. Likewise, the OsMCM2 protein was ubiquitously expressed, but it was downregulated when nutritients were limiting, indicating that MCM2 expression (and therefore cell cycle progression) requires adequate nutrition. Yeast two-hybrid and GST pull-down assays demonstrated that OsMCM2 interacted with the COP9 signalosome 5 (CSN5). Taken as a whole, our results indicated that OsMCM2 functions as a subunit of the rice MCM complex and interacts with CSN5 during developmental regulation.

A Study on the Strengthening Effect of Reinforced Conctete BeamsFlexural Strengthening after Pre-loading (선가력 후 휨 보강한 RC보의 보강 효과에 관한 연구)

  • Kim, Jeong-Sup;Sin, Yong-Seok;Jo, Cheol-Hee;Kim, Kyoug-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.183-190
    • /
    • 2006
  • From the result of this research above, it may be summed up as follows. As a summary of results from each experiment, as the test body reinforced with the carbon rods was embedded inside the concrete section and made it possible uniform movement, this study has shown that it had excellent characteristics in improving the flexural strength and ductility. Also, it was considered as the carbon-steel sheet composite plate was to exert the strength more if it would complement the adherence with the concrete.

Structural Behavior Evaluation of NRC Beam-Column Connections (NRC 보-기둥 접합부의 구조적 거동 평가)

  • Jeon, Ji-Hwan;Lee, Sang-Yun;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • In this study, details of NRC beam-column connections were developed in which beam and columns pre-assembled in factories using steel angles were bolted on site. The developed joint details are NRC-J type and NRC-JD type. NRC-J type is a method of tensile joining with TS bolts to the side and lower surfaces of the side plate of the NRC column and the end plate of the NRC beam. NRC-JD type has a rigid joint with high-strength bolts between the NRC beam and the side of the NRC column for shear, and with lap splices of reinforcing bar penetrating the joint and the beam main reinforcement for bending. For the seismic performance evaluation of the joint, three specimens were tested: an NRC-J specimen and NRC-JD specimen with NRC beam-column joint details, and an RC-J specimen with RC beam-column joint detail. As a result of the repeated lateral load test, the final failure mode of all specimens was the bending fracture of the beam at the beam-column interface. Compared to the RC-J specimen, the maximum strength of the specimen by the positive force was 10.1% and 29.6% higher in the NRC-J specimen and the NRC-JD specimen, respectively. Both NRC joint details were evaluated to secure ductility of 0.03 rad or more, the minimum total inter-story displacement angle required for the composite intermediate moment frame according to the KDS standard (KDS 41 31 00). At the slope by relative storey displacemet of 5.7%, the NRC-J specimen and the NRC-JD specimen had about 34.8% and 61.1% greater cumulative energy dissipation capacity than the RC specimen. The experimental strength of the NRC beam-column connection was evaluated to be 30% to 53% greater than the theoretical strength according to the KDS standard formula, and the standard formula evaluated the joint performance as a safety side.

BIM based Data Exchange System of Welded Wire/bar Mat for Pre-fab RC Members (BIM 기반 프리패브 부재의 용접철근매트 정보교환 시스템)

  • Jung, Jae-Hwan;Kim, Do-Hyeong;Kim, Hyun-Gi
    • Journal of KIBIM
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Reinforcing bars, a major component of the pre-fab structure, adheres to the existing on-site assembly method and attempts to develop and commercialize the technology of the pre-assembly method, but the effect is insignificant. Welded Wire / Bar Mat (WBM) has various advantages such as commercialization of rebar through machine manufacturing to improve workability, but it is different from the existing design and the construction method is different from the previous one. Therefore, to maximize the advantages of WBM and improve productivity, manufacturing, transportation, and construction from the design stage should be considered based on BIM from the initial design stage. In this paper, the concept of the design support system for the WBM was established based on the use of BIM in concrete reinforcement and the preliminary research on the WBM. WBM conversion design was performed for the existing prefabricated members, and based on this, the exchange format and system of the master prefabricated model with the WBM design data were set up. As a result of the pilot test, it was found that the traditional reinforcing bar information extracted from the master prefab model has transmitted 100% accurately. As for the WBM information, 100% of the information on the straight reinforcement was transmitted and represented, and the information on the bent reinforcement was found to have a 90% recall in the master BIM tool.