• Title/Summary/Keyword: practical learning

Search Result 2,176, Processing Time 0.032 seconds

Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment (딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발)

  • Jong-Ho Na;Jun-Ho Gong;Su-Deuk Lee;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.281-298
    • /
    • 2023
  • Continuous research efforts are being devoted to unmanned mobile platforms for lunar exploration. There is an ongoing demand for real-time information processing to accurately determine the positioning and mapping of areas of interest on the lunar surface. To apply deep learning processing and analysis techniques to practical rovers, research on software integration and optimization is imperative. In this study, a foundational investigation has been conducted on real-time analysis of virtual lunar base construction site images, aimed at automatically quantifying spatial information of key objects. This study involved transitioning from an existing region-based object recognition algorithm to a boundary box-based algorithm, thus enhancing object recognition accuracy and inference speed. To facilitate extensive data-based object matching training, the Batch Hard Triplet Mining technique was introduced, and research was conducted to optimize both training and inference processes. Furthermore, an improved software system for object recognition and identical object matching was integrated, accompanied by the development of visualization software for the automatic matching of identical objects within input images. Leveraging satellite simulative captured video data for training objects and moving object-captured video data for inference, training and inference for identical object matching were successfully executed. The outcomes of this research suggest the feasibility of implementing 3D spatial information based on continuous-capture video data of mobile platforms and utilizing it for positioning objects within regions of interest. As a result, these findings are expected to contribute to the integration of an automated on-site system for video-based construction monitoring and control of significant target objects within future lunar base construction sites.

Development of Design Elements of Rehabilitation for Individuals with Developmental Disabilities Based on Cultural Convergence of Lifelong Education for Individuals with Disabilities: Reflect Basic Related Fields such as Rehabilitation Science and Special Education as Centripetal Points (장애인평생교육 문화융합(cultural convergence) 기반의 발달장애 재활 설계 요소 개발: 재활과학-특수교육 기초 유관 분야 구심점)

  • Kim, Young-Jun;Han, Seung-A
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.427-434
    • /
    • 2022
  • This study aims to develop design elements for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities, which is a key area in the practical support system for independent life support for individuals with developmental disabilities. As for the research method, a procedure for conducting FGI by forming two teams for professors majoring in special education and rehabilitation science was formed. The research was presented in three upper categories (universal cultural convergence elements, field-centered cultural convergence elements, and policy-centered cultural convergence elements) that should be designed for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. In addition, subcategories were specifically composed for each upper category. First, as a universal cultural element, "open creative convergence" was presented in principle, which can be explained as a principle of exploring and practicing the validity of convergence between related fields for rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. Second, field-centered cultural factors included development of joint practice model between fields of rehabilitation science and special education, subject matter education knowledge and skills, teaching and learning methods, learning career roadmaps, employment and job career development roadmaps, and the formation of an independent life development history certification system. Third, as policy-centered cultural elements, the formation of a curriculum integration composition system between local related institutions, the establishment of a qualification development path for coordinator-professional teacher-type personnel, and the organizational systematization between school-center types were presented. The study concluded that independent life support for individuals with developmental disabilities should not only be guaranteed for the entire life of adulthood, but also a lifelong education for individuals with disabilities based rehabilitation support system for individuals with developmental disabilities should be established through cultural convergence.

Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID (계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템)

  • Lee, Sang-Hyun;Yang, Seong-Hun;Oh, Seung-Jin;Kang, Jinbeom
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.89-106
    • /
    • 2022
  • Recently, the amount of video data collected from smartphones, CCTVs, black boxes, and high-definition cameras has increased rapidly. According to the increasing video data, the requirements for analysis and utilization are increasing. Due to the lack of skilled manpower to analyze videos in many industries, machine learning and artificial intelligence are actively used to assist manpower. In this situation, the demand for various computer vision technologies such as object detection and tracking, action detection, emotion detection, and Re-ID also increased rapidly. However, the object detection and tracking technology has many difficulties that degrade performance, such as re-appearance after the object's departure from the video recording location, and occlusion. Accordingly, action and emotion detection models based on object detection and tracking models also have difficulties in extracting data for each object. In addition, deep learning architectures consist of various models suffer from performance degradation due to bottlenects and lack of optimization. In this study, we propose an video analysis system consists of YOLOv5 based DeepSORT object tracking model, SlowFast based action recognition model, Torchreid based Re-ID model, and AWS Rekognition which is emotion recognition service. Proposed model uses single-linkage hierarchical clustering based Re-ID and some processing method which maximize hardware throughput. It has higher accuracy than the performance of the re-identification model using simple metrics, near real-time processing performance, and prevents tracking failure due to object departure and re-emergence, occlusion, etc. By continuously linking the action and facial emotion detection results of each object to the same object, it is possible to efficiently analyze videos. The re-identification model extracts a feature vector from the bounding box of object image detected by the object tracking model for each frame, and applies the single-linkage hierarchical clustering from the past frame using the extracted feature vectors to identify the same object that failed to track. Through the above process, it is possible to re-track the same object that has failed to tracking in the case of re-appearance or occlusion after leaving the video location. As a result, action and facial emotion detection results of the newly recognized object due to the tracking fails can be linked to those of the object that appeared in the past. On the other hand, as a way to improve processing performance, we introduce Bounding Box Queue by Object and Feature Queue method that can reduce RAM memory requirements while maximizing GPU memory throughput. Also we introduce the IoF(Intersection over Face) algorithm that allows facial emotion recognized through AWS Rekognition to be linked with object tracking information. The academic significance of this study is that the two-stage re-identification model can have real-time performance even in a high-cost environment that performs action and facial emotion detection according to processing techniques without reducing the accuracy by using simple metrics to achieve real-time performance. The practical implication of this study is that in various industrial fields that require action and facial emotion detection but have many difficulties due to the fails in object tracking can analyze videos effectively through proposed model. Proposed model which has high accuracy of retrace and processing performance can be used in various fields such as intelligent monitoring, observation services and behavioral or psychological analysis services where the integration of tracking information and extracted metadata creates greate industrial and business value. In the future, in order to measure the object tracking performance more precisely, there is a need to conduct an experiment using the MOT Challenge dataset, which is data used by many international conferences. We will investigate the problem that the IoF algorithm cannot solve to develop an additional complementary algorithm. In addition, we plan to conduct additional research to apply this model to various fields' dataset related to intelligent video analysis.

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction (Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구)

  • Lee, Jae-Seong;Jun, Seung-Pyo;Seo, Jinny
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.73-95
    • /
    • 2021
  • This study uses Node2vec graph embedding method and Light GBM link prediction to explore undeveloped export candidate countries in Korea's food and beverage industry. Node2vec is the method that improves the limit of the structural equivalence representation of the network, which is known to be relatively weak compared to the existing link prediction method based on the number of common neighbors of the network. Therefore, the method is known to show excellent performance in both community detection and structural equivalence of the network. The vector value obtained by embedding the network in this way operates under the condition of a constant length from an arbitrarily designated starting point node. Therefore, it has the advantage that it is easy to apply the sequence of nodes as an input value to the model for downstream tasks such as Logistic Regression, Support Vector Machine, and Random Forest. Based on these features of the Node2vec graph embedding method, this study applied the above method to the international trade information of the Korean food and beverage industry. Through this, we intend to contribute to creating the effect of extensive margin diversification in Korea in the global value chain relationship of the industry. The optimal predictive model derived from the results of this study recorded a precision of 0.95 and a recall of 0.79, and an F1 score of 0.86, showing excellent performance. This performance was shown to be superior to that of the binary classifier based on Logistic Regression set as the baseline model. In the baseline model, a precision of 0.95 and a recall of 0.73 were recorded, and an F1 score of 0.83 was recorded. In addition, the light GBM-based optimal prediction model derived from this study showed superior performance than the link prediction model of previous studies, which is set as a benchmarking model in this study. The predictive model of the previous study recorded only a recall rate of 0.75, but the proposed model of this study showed better performance which recall rate is 0.79. The difference in the performance of the prediction results between benchmarking model and this study model is due to the model learning strategy. In this study, groups were classified by the trade value scale, and prediction models were trained differently for these groups. Specific methods are (1) a method of randomly masking and learning a model for all trades without setting specific conditions for trade value, (2) arbitrarily masking a part of the trades with an average trade value or higher and using the model method, and (3) a method of arbitrarily masking some of the trades with the top 25% or higher trade value and learning the model. As a result of the experiment, it was confirmed that the performance of the model trained by randomly masking some of the trades with the above-average trade value in this method was the best and appeared stably. It was found that most of the results of potential export candidates for Korea derived through the above model appeared appropriate through additional investigation. Combining the above, this study could suggest the practical utility of the link prediction method applying Node2vec and Light GBM. In addition, useful implications could be derived for weight update strategies that can perform better link prediction while training the model. On the other hand, this study also has policy utility because it is applied to trade transactions that have not been performed much in the research related to link prediction based on graph embedding. The results of this study support a rapid response to changes in the global value chain such as the recent US-China trade conflict or Japan's export regulations, and I think that it has sufficient usefulness as a tool for policy decision-making.

A Comparative Study on Awareness of Middle School Students, School Parents, and Human Resources Directors in Industrial Institutions about Admission into Specialized High Schools and Career after Graduating from Specialized High Schools (특성화고 진학 및 졸업 후 진로에 대한 중학생, 학부모, 산업체 인사 담당자의 인식 비교 연구)

  • Lee, Byung-Wook;Ahn, Jae-Yeong;Lee, Chan-Joo;Lee, Sang-Hyun
    • 대한공업교육학회지
    • /
    • v.38 no.2
    • /
    • pp.48-67
    • /
    • 2013
  • This study tried to suggest implications about operation direction of specialized high schools (SHS) by researching awareness of middle school students (MSS), school parents (SP), human resources directors in industrial institutions (HRDII) who will be the main users of SHS education, about entering SHS and career after graduating from SHS. Seniors of middle school, SP and HRDII in Asan, Chungnam were the subject of this survey research. The summary of the result of this study is as follow: First, MSS and SP usually hoped to enter general high schools rather than vocational education schools such as SHS, meister high schools, and MSS considered school records and SP considered aptitude and talent for the factors to choose high school. Second, MSS, SP, and HRDII recognized purposes of SHS as improvement of talent and aptitude, and getting a job. As for positive images of SHS, they recognized it as applying talent and aptitude to life early, getting good jobs easily, fast independence after graduation, and learning excellent technologies, and as for negative images of SHS, they recognized it as social prejudices and discrimination, students with bad school records enter them, disadvantages about promotion and wages, and being unfavorable for entering universities. They also recognized education of SHS as being effective for improvement of basic and executive ability and key competency, development of creative human resources, and improvement of right personality and courteous manners. Third, many MSS and SP showed intention to enter SHS if it is established in Asan. They wished to enter SHS because they would like to apply their aptitude and talent to life early, learn excellent skill, and hope for early employment, on the other hand, they did not wish to enter SHS because it was not suited for their aptitude and talent, awareness about SHS is low, it is unfavorable to enter universities, and there were social prejudices and discrimination. They also similarly hoped for getting jobs and entering universities after graduating from SHS. And the reason they wanted to get a job was usually because they want to be successful by advancing into society early, or because it is still hard to get a job even after graduate from the university, on the other hand, the reason they want to enter university is because is usually in-depth education about major and social discrimination about level of education. The ability to perform duties forms the greatest part of the employment standard that MSS, SP, and HRDII aware. MSS and SP usually hoped for industrial, home economics and housework and commercial majors in SHS, and considered aptitude and talent, the promising future, and being favorable for employment for choosing major. The reason HRDII hire SHS student was to develop student into talent of industrial institution, ability of student, and need for manpower with high school graduation level, and there were also partial answer that they can hire SHS student if they have ability to perform duties. The proposals about operation direction of SHS according to the results above are as follow: SHS should diversify major and curriculum to meet various requirements of student and parents, establish SHS admission system based on career guidance, and improve student's ability to perform duties by establishing work-based learning. The Government should organize work-to-school policy to enable practical career development of students from SHS, and promote relevant policy to reinforcing SHS education rather than quantitative evaluation such as employment rate, and cooperative support from each government departments is required to make manpower with skill related to SHS to get proper evaluation and treatment.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

A Study on the Impact of Artificial Intelligence on Decision Making : Focusing on Human-AI Collaboration and Decision-Maker's Personality Trait (인공지능이 의사결정에 미치는 영향에 관한 연구 : 인간과 인공지능의 협업 및 의사결정자의 성격 특성을 중심으로)

  • Lee, JeongSeon;Suh, Bomil;Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.231-252
    • /
    • 2021
  • Artificial intelligence (AI) is a key technology that will change the future the most. It affects the industry as a whole and daily life in various ways. As data availability increases, artificial intelligence finds an optimal solution and infers/predicts through self-learning. Research and investment related to automation that discovers and solves problems on its own are ongoing continuously. Automation of artificial intelligence has benefits such as cost reduction, minimization of human intervention and the difference of human capability. However, there are side effects, such as limiting the artificial intelligence's autonomy and erroneous results due to algorithmic bias. In the labor market, it raises the fear of job replacement. Prior studies on the utilization of artificial intelligence have shown that individuals do not necessarily use the information (or advice) it provides. Algorithm error is more sensitive than human error; so, people avoid algorithms after seeing errors, which is called "algorithm aversion." Recently, artificial intelligence has begun to be understood from the perspective of the augmentation of human intelligence. We have started to be interested in Human-AI collaboration rather than AI alone without human. A study of 1500 companies in various industries found that human-AI collaboration outperformed AI alone. In the medicine area, pathologist-deep learning collaboration dropped the pathologist cancer diagnosis error rate by 85%. Leading AI companies, such as IBM and Microsoft, are starting to adopt the direction of AI as augmented intelligence. Human-AI collaboration is emphasized in the decision-making process, because artificial intelligence is superior in analysis ability based on information. Intuition is a unique human capability so that human-AI collaboration can make optimal decisions. In an environment where change is getting faster and uncertainty increases, the need for artificial intelligence in decision-making will increase. In addition, active discussions are expected on approaches that utilize artificial intelligence for rational decision-making. This study investigates the impact of artificial intelligence on decision-making focuses on human-AI collaboration and the interaction between the decision maker personal traits and advisor type. The advisors were classified into three types: human, artificial intelligence, and human-AI collaboration. We investigated perceived usefulness of advice and the utilization of advice in decision making and whether the decision-maker's personal traits are influencing factors. Three hundred and eleven adult male and female experimenters conducted a task that predicts the age of faces in photos and the results showed that the advisor type does not directly affect the utilization of advice. The decision-maker utilizes it only when they believed advice can improve prediction performance. In the case of human-AI collaboration, decision-makers higher evaluated the perceived usefulness of advice, regardless of the decision maker's personal traits and the advice was more actively utilized. If the type of advisor was artificial intelligence alone, decision-makers who scored high in conscientiousness, high in extroversion, or low in neuroticism, high evaluated the perceived usefulness of the advice so they utilized advice actively. This study has academic significance in that it focuses on human-AI collaboration that the recent growing interest in artificial intelligence roles. It has expanded the relevant research area by considering the role of artificial intelligence as an advisor of decision-making and judgment research, and in aspects of practical significance, suggested views that companies should consider in order to enhance AI capability. To improve the effectiveness of AI-based systems, companies not only must introduce high-performance systems, but also need employees who properly understand digital information presented by AI, and can add non-digital information to make decisions. Moreover, to increase utilization in AI-based systems, task-oriented competencies, such as analytical skills and information technology capabilities, are important. in addition, it is expected that greater performance will be achieved if employee's personal traits are considered.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

A Study on the Effective Independent Study of Nursing Student (간호학생의 효과적인 자율학습을 위한 조사연구)

  • 김광주;이향련
    • Journal of Korean Academy of Nursing
    • /
    • v.8 no.1
    • /
    • pp.16-42
    • /
    • 1978
  • This survey was made for a month starting from November 15 to December 15, 1977 covering 711 students taking the junior. (3rd-yea.) and the senior. (4th-year) at nine college of nursing in Seoul concerning their perception and Attitude toward the profession of nursing, motive for the necessity of learning, environment of study, attitude of study and particulars relevant with study performance, particulars of library, references and reading, assignments and particulars of the degree of confidence for the learning achievement. Through the survey of the above Particulars, the following results were obtained by classifying all subject matters and by analysing motive of the selection of their course, awarding or not awarding of scholarships. 1. General characteristics: it was revealed that 406 students (57.1%) were attending at the junior. while 305 students (42.9%) were taking the senior. Thus, the total number was 711 and their average age was 21.4 years. Their dwelling category was; 73.9 percent of them resided at their parent's home, 214 students (30.1%) were awarded with scholarships. The reason to be attracted by nursing science was the possibility of continuing social life after graduation (43.5%). 2. Their perception and attitude toward the profession of nursing: According to the perception of profession by the students of each grade, students of the 4th grade showed comparatively strong conception. Also, students of the 4th grade showed more positive attitude in the purchase and reading of magazines relative with the science of nursing, in the reading of Code for Nurses and in their interest in the activity of nursing field. For the necessity of mission of nurse, 97.7 percent of the entire number of students covered responded to necessity. For the necessity of the particular humanity and particularity in the character of nurses, 95.8 percent of those students responded to necessity. By the each grade, students of the 4th grade showed more response. 3. As to professional field desired after completing the professional course: 57 percent of those students desired for clinician nurse while 55 percents desired for community health-nurse. 4. As to the environment of study: they were mostly satisfied with their present residential environment. However, they complained of inconvenience at their lecture-halls. Students of the 3rd grade showed more complain. As to their attitude toward the adjustment of environment of study, they showed a affirmative response. As to the opinion of factors which interfere with their study, comparatively strong response was showed in their scepticism in the science of nursing, insufficient comprehension in general learning, relation with professors n4 discrepancy in the method of study. According to opinions of students at each grade, students of the 4th grade showed more scepticism. 5. Particulars relative with their attitude and performance of study : As to their knowledge of the objectives of their study of subject, the majority was to study with a partial knowledge of the objectives of their study. As to the plan of study, a low percentage indicated management of routine life under regular scheduling. Students of the 4th grade responded to rather planned life. As to time spent in independent study, response to concentrated study when necessary was stronger than that to regular daily study. Students of the 4th grade showed stronger response to regular study than that of the 3rd grade. As to the contents of their note-taking, 67.4 percents of those students responded to such regulatory procedure performing in the lecture-hall as they listen to lectures. 17.3 percents of those students showed response to adding supplementary informations from references to what was entered in choir note-taking at their lecture-halls. 6. Particulars of library, references and reading books: As to receiving of instruction for the utilization of library and time of receiving such instruction 64.7 percents of those students had received such instruction. 66.7 percents of the those responded received such instruction at orientation conducted for freshmen. As to the convenience of the utilization of library, 49.9 percents of those students responded to convenience. However, students of the 3rd grade showed a much stronger response to inconvenience. As to the time of the utilization of library,92.5 percents of those students showed a response to occasional utilization for particular purpose than regular utilization. 53.2 percents of those students responded to ordinary in quantity that library have references. 34.2 percents of those students responded to insufficient. As to the particular relative with the method and field of reading: 53.5 percents of those students responded to intensive reading and was the majority. As to the reading field, fiction u as the majority. When read any books for their major, they usually rend Korean text-b, oks. 7. Particular relative with giving assignment: All respondents were well aware of the objectives of giving home tasks. As to the attitude toward assignments and performing home tasks, 54.8 percents of those students to making ostentatious study because of an excessive quantity of assignments imposed. For performing assignment, they showed comparatively positive response. Also, 52.2 percents of those students responded that they usually submitted complected assignment with references. 8. As to motive to realize the necessity of study : 55.6 percents of those students responded that they realized such necessity in communication with patients when they were engaged in clinical practice. Also, 8.6, the lowest percents of those students responded that they realized such necessity in the course of conversation with nurses when they were engaged in clinical practice. 9. As to the determination of their confidence in the performance of study relative with clinical experience: They showed a general inclination of having in nursing. The major response was that they came to well comprehend the patients families. the lowest response was that they could apply what was learned at lecture-hall to practice. This response incidentally showed the distance the lecture-hall and practical study. In general items, students of the 4th grade showed more favorable response than students of the 3rd grade and there was a significant difference. 10. As to the perception and attitude toward profession according to the motive of selecting the nursing science : Those who selected the nursing voluntarily showed stronger conception than those who selected the nursing through indirect influence. However, there was no significant difference on this point. Only there was a remarkable difference in the reading of Code for Nurses. 11. Those who showed a stronger conception in the profession of nursing according to the motives of attractive nursing science indicated a strong will and ability to manage stable life and comparatively strong response was shown in the management of good home life because of the good adaptability of the science to their character. This group showed a strong conception of the profession than those who responded that they prefer this profession out of a longing for the work of a hospital and for the easy obtaining of opportunity to immigrate to over seas and for economic cause and for high school grade. There was significant difference between these two groups, 12. As to the conception and attitude toward the profession of nursing according to benefits by scholarships, those who were benefitted by scholarship showed stronger conception of profession than those who did not receive scholarship and there was a remarkable difference between these two categories. However, there was no remarkable difference between these two categories in the extent of interest of the activities of nursing fields and in the reading of Code for Nurses. 13. As activation for study according to the benefits of scholarships, those who were benefitted by scholarships showed stronger response to the motive for study comparing with those who receive. 14. As to tile field of reading according to the benefits by scholarships, those who received scholarships tended to read autobiographies and essayers to a considerable extent. Those who did not receive scholarships tended to read novels. Those who received scholarships more read nursing boots than those who did not receive scholarships. 15. As to the attitude of study and doing of assignment according to benefits of scholarships, those who received scholarships managed a favorable life with schedules for study, More students of receiving scholarship showed a regular study for more than one hour per day. Also, in the method of doing home tasks, more students of receiving scholarship showed reference to relative books frequently for the submission of completed assignments.

  • PDF