• Title/Summary/Keyword: prM protein

Search Result 46, Processing Time 0.022 seconds

Comparison of Immunomodualtory Effects of Water-extracted Aconiti lateralis Preparata Radix, Zingiberis Rhizoma, Cinnamomi Cortex and Evodiae Fructus (온리약인 부자, 건강, 육계, 오수유의 면역조절효과 비교)

  • Son, Gil-Hyun;Shin, Sang-Woo;Kwon, Young-Kyu;Kim, Sang-Chan;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.1000-1010
    • /
    • 2005
  • This study was carried out to investigate the comparison of immunomodualtory effects of water-extracted Aconiti lateralis Preparata Radix(PR), Zingiberis Rhizoma(ZR), Cinnamomi Cortex(CC) and Evodiae Fructus(EF). The parameter examined to assess apparent immunomodulatory effect of the water-extracted PR, ZR, CC and EF included the regulation of Nitric oxide (NO). Also, ZR and EF represent the expression of Th1/Th2 type cytokine, the change of B cell phenotype. The water-extracted PR, ZR, CC and EF inhibited NO production and iNOS protein expression in LPS stimulated RAW 264.7 macrophage cells. In the Th1 and Th2 cytokine expression, the water-extracted ZR and EF induced IL-2, IFNr and IL-10 mRNA gene expression. Therefore, it seems that the water-extracted ZR and EF have a inducing effect of Th1 and Th2 type cytokines. In the Flow cytometry analysis, the water-extracted ZR and EF changed B cell phenotype (CD45R/B220), did NOT in PR and CC. The water-extracted PR, ZR, CC and EF have a reducing effect of immune suppression cause by Methotrexate (MTX), an agent of immune suppression. These results suggest that the immunomodulatory effects of the water-extracted ZR and EF may be, in part, associated with the inducing IL-2 and IFNr mRNA gene expression In and regulation of NO production in macrophage cells.

Molecular cloning and sequence Analysis of the Gene for SecY from Streptomyces coelicolor (Muller) (Streptomyces coelicolor에서 secY 유전자의 클로닝과 염기서열 결정)

  • Kim, Sang-Suk;Hyun, Chang-Gu;Kim, Young-Min;Lee, Joo-Hun;Chung, In-Kwon;Kim, Dae-Myung;Suh, Joo-Won
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.678-686
    • /
    • 1995
  • SecY is a central component of the protein export machinery that mediate the translocation of secretory proteins across the plasma membrane of Escherichia coli. In order to study the mechanism of protein secretion in Streptomyces, we have done cloning and sequencing of the Streptomyces coelicolor secY gene by using polymerase chain reaction method. The nucleotide sequence of the gene for SecY from S. coelicolor showed over 58% identity to that of M. luteus. The deduced amino acid sequences were highly homologous to those of other known SecY polypeptides, all having the potential to form 10 transmembrane segments, and especially second, fifth, and tenth segments were particularly conserved, sharing greater than 75% identity with W. lute s SecY. We propose that the conserved membrane-spanning segments actively participate in protein export. In B. subtilis and E. coli, the secY gene is a part of the spc operon, is preceded by the gene coding for ribosomal protein L15, and is likety coupled transcriptionally and translationally to the upstream L15 gene. In the other hand, secY gene of S. coelicolor and M. luteus have its own promoter region, are coupled translationally with adk gene and pr sented in adk operon.

  • PDF

Effects of Polygalae Radix on Apotosis in PC-12 Cell (원지(遠志)물추출물이 Apoptosis에 미치는 효과)

  • Lee, Sang-Chul;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • Objectives : The purpose of this study was to observe the effects of Polygalae Radix(PR) on 4-HNE-induced apoptosis in PC-12 cell. Methods : A MTT assay was conducted to observe the cytotoxicity of Polygalae Radix on the cell viability and the cytoprotective effect of Polygalae Radix against 4-HNE that causes oxidative stress-induced cytotoxicity, and then a western blot was conducted to observe the expression of $TNF-{\alpha}$, caspase-3, Bax and Bcl-2 protein that are important factors involved with apoptosis signaling pathway. Results : The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$, $100{\mu}g$ and $200{\mu}g/mL$ had no cytotoxicity on the PC-12 cell. The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$ and $100{\mu}g/mL$ had the cytoprotective effect against 4-HNE that causes cytotoxicity on the PC-12 cell. The Polygalae Radix water extract $50{\mu}g/mL$ significantly suppressed the increase in $TNF-{\alpha}$ protein expression in PC-12 cell. The Polygalae Radix water extract $25{\mu}g$ and $50{\mu}g/mL$ significantly suppressed the increase in caspase-3 protein expression in PC-12 cell. The Polygalae Radix water extract $25{\mu}g$, $50{\mu}g$ and $100{\mu}g/mL$ suppressed the increase in Bax protein expression in PC-12 cell but had no significance. The Polygalae Radix water extract $25{\mu}g$ and $100{\mu}g/mL$ significantly prevented the decrease in Bcl-2 protein expression in PC-12 cell, Conclusions : These results suggest that the Polygalae Radix water extract is effective in inhibiting apoptosis.

Expression of $HpaG_{Xooc}$ Protein in Bacillus subtilis and its Biological Functions

  • Wu, Huijun;Wang, Shuai;Qiao, Junqing;Liu, Jun;Zhan, Jiang;Gao, Xuewen
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.194-203
    • /
    • 2009
  • $HpaG_{Xooc}$, from rice pathogenic bacterium Xanthomonas oryzae pv. oryzicola, is a member of the harpin group of proteins, eliciting hypersensitive cell death in non-host plants, inducing disease and insect resistance in plants, and enhancing plant growth. To express and secret the $HpaG_{Xooc}$ protein in Bacillus subtilis, we constructed a recombinant expression vector pM43HF with stronger promoter P43 and signal peptide element nprB. The SDS-PAGE and Western blot analysis demonstrated the expression of the protein $HpaG_{Xooc}$ in B. subtilis. The ELISA analysis determined the optimum condition for $HpaG_{Xooc}$ expression in B. subtilis WBHF. The biological function analysis indicated that the protein $HpaG_{Xooc}$ from B. subtilis WBHF elicits hypersensitive response(HR) and enhances the growth of tobacco. The results of RT-PCR analysis revealed that $HpaG_{Xooc}$ induces expression of the pathogenesis-related genes PR-1a and PR-1b in plant defense response.

Photochemical/Biophysical Properties of Proteorhodopsin and Anabaena Sensory Rhodopsin in Various Physical Environments (막 단백질인 Proteorhodopsin과 Anabaena Sensory Rhodopsin의 다양한 측정 환경에 따른 광화학/생물리학적 특성)

  • Choi, Ah-Reum;Han, Song-I;Chung, Young-Ho;Jung, Kwang-Hwan
    • Korean Journal of Microbiology
    • /
    • v.47 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • Rhodopsin is a membrane protein with seven transmembrane region which contains a retinal as its chromophore. Although there have been recently reports on various photo-biochemical features of rhodopsins by a wide range of purifying and measurement methods, there was no actual comparison related to the difference of biochemical characteristics according to their physical environment of rhodopsins. First, proteorhodopsin (PR) was found in marine proteobacteria whose function is known for pumping proton using light energy. Second one is Anabaena sensory rhodopsin (Nostoc sp.) PCC7120 (ASR) which belongs to eubacteria acts as sensory regulator since it is co-expressed with transducer 14 kDa in an operon. In this study, we applied two types of rhodopsins (PR and ASR) to various environmental conditions such as in Escherichia coli membranes, membrane in acrylamide gel, in DDM (n-dodecyl-${\beta}$-D-maltopyranoside), OG (octyl-${\beta}$-D-glucopyranoside), and reconstituted with DOPC (1,2-didecanoyl-sn-glycero-3-phosphocholine). According to the light-induced difference spectroscopy, rhodopsins in 0.02% DDM clearly showed photointermediates like M, and O states which respond to the different wavelengths, respectively and showed the best signal/noise ratio. The laser-induced difference spectra showed the fast formation and decay rate of photointermediates in the DDM solubilized samples than gel encapsulated rhodopsin. Each of rhodopsins seemed to be adapted to its surrounding environment.

Functional Characterization of the C-Terminus of YhaV in the Escherichia coli PrlF-YhaV Toxin-Antitoxin System

  • Choi, Wonho;Yoon, Min-Ho;Park, Jung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.987-996
    • /
    • 2018
  • Bacterial programmed cell death is regulated by the toxin-antitoxin (TA) system. YhaV (toxin) and Pr1F (antitoxin) have been recently identified as a type II TA system in Escherichia coli. YhaV homologs have conserved active residues within the C-terminus, and to characterize the function of this region, we purified native YhaV protein (without denaturing) and constructed YhaV proteins of varying lengths. Here, we report a new low-temperature method of purifying native YhaV, which is notable given the existing challenges of purifying this highly toxic protein. The secondary structures and thermostability of the purified native protein were characterized and no significant structural destruction was observed, suggesting that the observed inhibition of cell growth in vivo was not the result of structural protein damage. However, it has been reported that excessive levels of protein expression may result in protein misfolding and changes in cell growth and mRNA stability. To exclude this possibility, we used an [$^{35}S$]-methionine prokaryotic cell-free protein synthesis system in vitro in the presence of purified YhaV, and two C-terminal truncated forms of this protein (YhaV-L and YhaV-S). Our results suggest that the YhaV C-terminal region is essential for mRNA interferase activity, and the W143 or H154 residues may play an analogous role to Y87 of RelE.

Salicylic Acid and Wounding Induce Defense-Related Proteins in Chinese Cabbage

  • Kim, Hong-Nam;Cha, Jae-Soon;Cho, Tae-Ju;Kim, Hak-Yong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.213-219
    • /
    • 2003
  • The response of plants to pathogens and wounding is dependent upon very sensitive perception mechanisms. Although genetic approaches have revealed a variety of resistance genes that activate common defense responses, defense-related proteins are not well characterized in plants. Therefore, we used a proteomic approach to determine which defense-related proteins are induced by salicylic acid (SA) and wounding in Chinese cabbage. We found that SA and wounding induce pathogenesis-related protein 1a (PR1a) at both protein and mRNA levels using proteomics and Northern blot analysis, respectively. This indicates that our proteomic approach is useful for identifying defense-related proteins. We also identified several other proteins that are induced by SA or wounding. Among the seven SA-induced proteins identified, four may be defense-related, including defense-related protein, phospholipase D (PLD), resistance protein RPS2 homolog, and L-ascorbate peroxidase. Out of the six wounding-induced proteins identified, three may be defense-related: heat shock cognate protein 70 (HSC70), polygalacturonase, and peroxidase P7. The precise functions of these proteins in plant defense responses await further study. However, identification of the defense-related proteins described in this study should allow us to better understand the mechanisms and signal transduction pathways involved in defense responses in Chinese cabbage.

Functional characterization of a CCCH type zinc-finger protein gene OsZF2 by ectopic overexpression of the gene in rice (과발현 형질전환벼에서 CCCH type zinc-finger protein 유전자 OsZF2 기능 분석)

  • Lee, Jung-Sook;Yoon, In-Sun;Yoon, Ung-Han;Lee, Gang-Seob;Byun, Myung-Ok;Suh, Seok-Chul
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2009
  • We have previously isolated a CCCH type zinc-finger protein gene, OsZF2 (Oryza sativa Zinc Finger 2), from the cold-treated rice cDNA library. To investigate the potential role of OsZF2, transgenic rice lines over-expressing OsZF2 under the control of CaMV 35S promoter have been developed through Agrobacterium-mediated transformation. Elevated level of OsZF2 transcripts was confirmed by RNA gel blot analysis in transgenic rice. Under the 100 mM NaCl condition, the transgenic rice showed significantly enhanced growth rate in terms of shoot length and fresh weight, implicating that OsZF2 is likely to be involved in salt response of rice. In the field condition, however, the transgenic rice showed a dwarf phenotype and flowering time was delayed. Genome expression profiling analysis of transgenic plants using the 20K NSF rice oligonucleotide array revealed many up-regulated genes related to stress responses and signaling pathways such as chaperone protein dnaJ 72, salt stress-induced protein, PR protein, disease resistance proteins RPM1 and Cf2/Cf5 disease resistance protein, carbohydrate/ sugar transporter, OsWAK kinase, brassinosteroid LRR receptor kinase, and jasmonate O-methyltransferase. These data suggest that the CCCH type zinc-finger protein OsZF2 is a upstream transcriptional factor regulating growth and stress responsiveness of rice.

Antigenic and Genetic Differences between the Prototype Nakayama-NIH Strain and Korean Strains of Japanese Encephalitis Virus (일본뇌염 바이러스 Nakayama-NIH주와 국내에서 분리된 일본 뇌염 바이러스주의 유전적 차이 및 항원성 차이의 조사)

  • Cho, Hae-Wol;Nam, Jae-Hwan;Lee, Yoo-Jin;Kim, Eung-Jung;Lee, Ho-Dong;Yun, Gyeong-Sik;Koh, Hyun-Chul
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.191-204
    • /
    • 1996
  • The characterization of the 5 Korean isolates (K96P10, K94P05, K91P55, K87P39, and K82P01) of Japanese encephalitis virus (JEV) was compared with JE virus prototype Nakayama-NIH (NKY-NIH) using prM/M and envelope gene sequences of the JEV genome and phylogenetic analysis. The antigenic analysis of these viruses were done by the cross-hamagglutination inhibition (HI) test using polyclonal antibodies against Korean isolates and NKY-NIH. The sequence homology of the Korean isolates and NKY-NIH ranged between 87.4 % - 95.6 % at the nucleotide level and between 98.2 % - 97.2 % at the amino acid level over the E nucleotides compared. Alignment of E protein amino acid sequences revealed that residue positions E89, E129, E221, E244, E327, E366, E459, and E477 characterized the Korean strains. According to phylogenetic analysis bases on the E nucleotide, there are at least 2 genetic types of JEV existing in Korea and Korean strains were distinct from NKY-NIH. However, the cross HI test results of all the Korean isolates were serologically no different from NKY-NIH strain.

  • PDF

Purification and Properties of Ribosome-inactivating Proteins from the Leaves of $Cucurbita\;moschata\;D_{UCHESNE}$ (호박$(Cucurbita\;moschata\;D_{UCHESNE})$잎에서 리보즘불활성화 단백질의 분리 및 특성)

  • Lee, Si-Myung;Kim, Yeong-Tae;Hwang, Young-Soo;Cho, Kang-Jin
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.375-379
    • /
    • 1997
  • Two ribosome-inactivating proteins, PRIP 1 and PRIP 2 have been isolated from the leaves of $Cucurbita\;moschata\;D_{UCHESNE}$. Crude extracts were purified through ammonium sulfate precipitation and column chromatography using DE-52 cellulose, S-Sepharose, FPLC Suprose 12 HR and FPLC Mono-S. The molecular weights of PRIP 1 and PRIP 2 were 31,000 and 30,500, respectively. PRIP 2 was thermostabe and maintained its activity even after the incubation of the protein at $50^{\circ}C$ for 30 min. In a cell free in vitro translation system using rabbit reticulocyte lysate, protein synthesis was inhibited by the addition of PRIP 1 and PRIP 2. The $IC_{50}$ of PRIP 1 and PRIP 2 were 0.82 nM and 0.79 nM, respectively. The comparison of N-terminal amino acid sequences of the PRIP 1 and PRIP 2 with known RIPs revealed that PRIP 1 shows sequence similarity with Luffin B from Luffa cylindrica and Trichokirin from Trichosanthes kirilowii Maximowicz and PRH) 2 has sequence similarity with Momordin II and MAP 30 from Momordica charantia.

  • PDF