• Title/Summary/Keyword: pp fiber

Search Result 347, Processing Time 0.024 seconds

A Study on the Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics (유리섬유로 보강된 수지에서 제품설계 및 성형조건에 따른 휨의 연구: Part 2. 결정성 수지)

  • Lee, Min;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.677-684
    • /
    • 2012
  • Injection molding process is a popular polymer processing involving plasticizing and enforcing the material flow into the mold. A polymer material shrinks according to temperature variations during the shaping process, and subsequently molding shrinkage developed. Developed deflections or warpages after molding process in part are caused by residual stress relaxation contained in the part. Adding inorganic materials or fibers such as glass and carbon to control shrinkage and enhance warpage resistance are common. In this study, warpages according to part design have been investigated through experiment. Warpages for molding conditions and mold designs such as gate locations were measured. Warpages along flow direction and perpendicular to the flow direction were also measured. Warpages near gate and far from gate were compared. Glass fiber reinforced crystalline polymers, PP and PA66 have been used in this experiment. Glass fiber reinforced crystalline polymers showed large warpage compared with glass reinforced amorphous polymers. Warpages in crystalline polymers were less influenced by molding conditions compared with amorphous polymers, however warpages of crystalline polymers significantly depend on part design.

The water vapor pressure property of 150MPa level ultra high strength concrete reinforced with polypropylene fiber and amorphous steel fiber at high temperature (고온에서 폴리프로필렌섬유와 비정질강섬유를 보강한 150MPa급 초고강도 콘크리트의 수증기 압력특성)

  • Suh, Dong-Kyun;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Eu, Ha-Min;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.132-133
    • /
    • 2020
  • The aim of this study is to evaluate the combination effect of amorphous steel fiber and polypropylene fiber on spalling of the 150MPa level ultra high strength concrete. Considering spalling has a great relationship with water vapor pressure, this paper is focusing on water vapor pressure. The test specimens were heated accordance with ISO-834 Standard Curve using electric heating furnace, the depth of 10mm water vapor pressure formation was tend to get faster and spalling damage become severe when the mixing proportion of amorphous steel fiber increase. When using ultra high strength concrete reinforced with amorphous steel fiber, further research about proper mixing proportion of polypropylene fiber.

  • PDF

Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure (Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정)

  • Lim, Seung-Hyun;Jeon, Kang-Il;Son, Young-Gon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1982-1987
    • /
    • 2011
  • In this study, we proposed a new method that can estimate viscosity curves of unknown samples or high viscous resins like LFT(Long Fiber Thermoplastics). First, we built the system that could detect the pressure of melt during filling the cavity in a mold. It consists of both pressure sensors which are installed in a mold and the Kit which can convert analog signal to digital signal. The kit measures the melt pressure in mold cavity. We could also simulate the cavity pressure during filling process with commercialized CAE softwares(ex, Moldflow). If the viscosity data in CAE Database were correct, the simulated pressure profile coincided with the measured one. According to our proposed algorithm, we obtained correct viscosity data by iterating the process of comparing the simulated profile with the measured one until both coincided each other. In order to verify this algorithm, we selected well-defined PP resin and concluded that the experimental profile comply with the CAE profile. We could also estimate the optimized viscosity curves for PP-LFT by applying our method.

Bootstrap Simulation for Performance Evaluation of Optical Multifiber Connectors (붓스크랩 기법을 이용한 다심 광커넥터 손실특성 예측)

  • 전오곤;강기훈
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.250-264
    • /
    • 1998
  • The purpose of the thesis is to develop simulation program for forecasting of optical connector. So we can achieve the time and the money saving for making the optical connector. Optical performance (insertion loss) of optical connector mainly relies on 3 misalignment factors-ferrule factor due to mis-manufacture from design, auto-centering effect that is fiber behavior phenomena between hole and fiber, fiber misalignment factor. Simulation use experimental data with auto-centering effect and fiber factor and use pseudo data with ferrule through random number generation because it is developing stage. In this study we a, pp.y kernel density estimation method with experimental data in order to know whether it belong to or not specific parametric distribution family. And we simulate to forecast insertion loss of optical multifiber connector under specific design model using nonparametric bootstrap resampling data and parametric pseudo samples from uniform distribution. We obtain the tolerance specifications of misalignment factors satisfying not exceed in maximum 1.0dB and choose optimal hole diameter.

  • PDF

An Experimental Study on the Fire Resistance Properties of High Strength Concrete using Fiber for Field Application (현장 적용을 위한 섬유혼입 고강도콘크리트의 내화특성에 관한 실험적 연구)

  • Kim, Yong-Ro;Song, Young-Chan;Jungi, Yang-Hee;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.187-191
    • /
    • 2008
  • It is necessary to develop a technology for effectively controling explosive spalling of high strength concrete caused increasing construction of high rise building and putting up the fireproof standard of high strength concrete by MLTM (Ministry of Land, Transport and Maritime Affairs). Accordingly, it was investigated basic properties such as slump, air content and compressive strength, and fire resistance properties of high strength concrete using polypropylene fiber for field application as a countermeasure for explosive spalling of concrete on fire in this study, As a test result, it was confirmed that PP fiber is available as fire resistance method of high strength concrete.

  • PDF

Properties of Fire Resistance of High Strength Concrete as a Function of Type of Fiber and Cover (섬유 종류 및 피복두께 변화에 따른 고강도콘크리트 내화 특성)

  • Hyun, Tae-Yang;Cho, Yun-Gu;Kim, Jun-Hyung;Lim, Chang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.417-418
    • /
    • 2010
  • The purpose of this study is to investigate the fire resistance of high strength concrete with fiber after 3 hours unstressed fire test. Two types of fiber, polypropylene(PP) and Nylon(NY), were selected, and three cover thickness were selected, which were 40mm, 50mm, 60mm. The results indicate that the fire resistance will be achieved in suitable amount of fiber.

  • PDF

A study on characteristic adgesive condition at microscopic interfaces and notch shape strength of GFRP composites laminates under low-hot-wet environment (저온.고온고습 환경시험에 의한 GFRP의 미시계면 접착상태 및 노치형상강도 특성에 관한 연구)

  • 김옥만;박귀성;한길영;이동기;김이곤
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.58-66
    • /
    • 1996
  • The purpose of this investigation is to estimate the strength with the variations of the notch shape and the adgesive condition at the fiber/matrix micro interface of E-glass/PP laminates. To promote the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss, low-, hot-wet and spiking tests were carried out. The absorpotion properties and the tensile properties were compared accrding to the fiber orientation and the content. The results show that, firstly, saturated moisture absorption was reached at 5cycles and their absorptions of RD-40, UD-42 and UD-50 are 0.68%, 0.63%, 0.60%, respectively. Secondly, all the specimens investigated were mostly degraded at 5cycle, whereas UD-50 having ellipse shaped notch the least decrement of strength.

  • PDF

Effect of Amorphous Steel Fiber on the Spalling Characteristics of High-strength Concrete (고강도콘크리트의 폭렬특성에 미치는 비정질 강섬유의 영향)

  • Kim, Jong-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.32-33
    • /
    • 2019
  • This study evaluated the effect of amorphous steel fibers on the spalling characteristics of high-strength concrete. with mix proportions of polypropylene (PP) fibers of 0.15% by concrete volume, and proportions of amorphous steel fibers of 0.3% and 0.5% by concrete volume. In the range of 0.3 vol% of amorphous steel fiber, the effect of suppression of the spalling and the prevention of degradation of strength was shown, but it was evaluated to be ineffective in the suppression of the spalling due to interferences in formation of pore network in the range of 0.5 vol.%.

  • PDF

Structure and Oil Sorption Capacity of Kapok Fiber [Ceibapentandra (L.) Gaertn.] (케이폭의 구조 및 흡유 특성)

  • Lee, Young-Hee;Lee, Jung-Hee;Son, Su-Jin;Lee, Dong-Jin;Jung, Young-Jin;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.23 no.3
    • /
    • pp.210-218
    • /
    • 2011
  • The structure of kapok fiber was characterized using FTIR and $^{13}C$-NMR spectrometers, elemental analyzer, x-ray diffractometer, SEM and IMT I-Solution ver 7.5. The kapok has a hollow tube shape and is composed of cellulose I with crystallinity of 47.95%. To develop novel oil-sorbent materials necessary to avoid the environmental pollution by spilled oil, the oil absorption capacity of various fibers such as kapok, polypropylene(PP), acryl, bamboo, cotton, rayon and wool fibers is compared in this study. The kapok fiber had the highest oil absorption capacity among the fibers and its water absorption capacity was the least. The kapok fiber selectively absorbed significant amounts of oils (43g/g of fiber for kerosene, 65g/g of fiber for soybean oil), which might be due to higher hydrophobicity of the kapok fiber, suggesting that kapok fiber may have high potential as excellent oil-absorbent materials.

Development Properties of Rebar in Tension with High Strength Concrete (인장을 받는 고강도철근콘크리트 부재의 정착성능 평가)

  • Park, Su-Hee;Lee, Bum-Sik;Kim, Sang-Yeon;Park, Seoung-Sik;Bae, Kee-Sun;Kim, Seong-Deok
    • Land and Housing Review
    • /
    • v.2 no.1
    • /
    • pp.53-60
    • /
    • 2011
  • In this study, development tests varying with concrete strength, development length, and the rate of fiber mix ratio are carried out to evaluate the development characteristics of high-strength concrete member with 80MPa, and the applicability of estimated standards of development length in KCI 2007. As a result, it can be expected that minimum development length of KCI 2007 is applicable to high-strength concrete member with 80MPa. Although the mixed fiber(NY+PP) to secure fire resistance performance of high-strength concrete is included up to 0.1%, it does not affect the development characteristics.