• Title/Summary/Keyword: pozzolan reaction

Search Result 41, Processing Time 0.03 seconds

The Leakage Reduction of Natural Inorganic Powder Compound Applying Subsurface Structural Weak Part (지하구조물 취약부에 적용한 천연 무기질계 분말형 혼화제의 누수저감효과)

  • Yoon, Sung-Hwan;Seo, Hyun-Jae;Lee, Hye-Ryung;Park, Jin-Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.19-22
    • /
    • 2011
  • For underground structures that are exposed to environmental conditions, the declination of the durability of concrete occurs easily because of leakages from high hydraulic pressure and the frequent contact of water due to environmental factors. Therefore this study is to confirm that the leakage reduction of natural inorgnic powder compound applying subsurface structural weak part and make the performance improvement of concrete as an objective. The test was done by making the rebar, flat tie, nail and film infiltration and each of its water tank and cylindrical test body then after pouring water to each of the test body, the test observe the change of the water tank surface absorbed condition and leakage of each specimen with respect to time. As a conclusion, the test was observed that this water proofing admixture has better watertightness from the beginning of the setting time(when it hardens), the ettringite and the thaumasite generates a large quantity of hydration products that controls the formation in a large opening and the CSH produced by pozzolan reaction makes a dent at this opening.

  • PDF

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Effect of Inorganic Admixture for Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 무기 첨가제 영향)

  • Lee, Jong-Kyu;Soh, Jung-Sub
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 2015
  • The carbon dioxide($CO_2$) released while producing building materials is substantial and has been targeted as a leading contributor to global climate change. One of the most typical method to reducing $CO_2$ for building materials is the addition of slag and fly ash, like pozzolan material, while another method is reducing $CO_2$ production by carbon negative cement development. The MgO-based cement was from the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. It is also believed that adding reactive MgO to Portland-pozzolan cements could improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as main starting materials, as well as silica fume, fly ash and blast furnace slag for the mineral admixture, were carried out for industrial waste material recycling. In order to increase the hydration activity, $MgCl_2$ was also added. To improve hydration activity, $MgCO_3$ and serpentinite were fired at $700^{\circ}C$ and autoclave treatment was conducted. In the case of $MgCO_3$ as starting material, hydration activity was the highest at firing temperature of $700^{\circ}C$. This $MgCO_3$ was completely transferred to MgO after firing. This occurred after the hydration reaction with water MgO was transferred completely to $Mg(OH)_2$ as a hydration product. In the case of using only $MgCO_3$, the compressive strength was 3.5MPa at 28 days. The addition of silica fume enhanced compressive strength to 5.5 MPa. In the composition of $MgCO_3$-serpentine, the addition of pozzolanic materials such as silica fume increased the compression strength. In particular, the addition of $MgCl_2$ compressive strength was increased to 80 MPa.

Activating Temperature of Kaolin As a Cement Admixture

  • Park, Hee-Yong;Hwang, Hey-Zoo;Kim, Moo-Han;Kim, Moon-Han
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • This research concerns the effect of kaolin as material of cement admixture. which has the advantage of low price and high adaptability. Kaolin, a kind of soil, is well known as a raw material of pottery. which is widely scat-tered on the earth (especially in Korea). This research shows the method and process for activating kaolin to have the properties of a cement admixture through experiment. In the experiments, kaolin is baked in high temperature and then cooled suddenly to be activated. The temperature zone and time span, on which kaolin is activated are examined. The research looks over the effect of the activated kaolin based on several criteria regarding to chemical and physical characteristic of general admixtures. The results of this research are as follows; kaolin start activation at the temperature above 50$0^{\circ}C$ and make ends of activation at the temperature below 95$0^{\circ}C$ and there was little effect by the change of duration. It is concluded that compressive strength can be increased by putting activated kaolin in the concrete and the activated kaolin is good for water resistance and anti-chemical , and that it is effective for protecting the leakage of hazardous article like Cl- and for protecting damage by an organic salt like acid. The activated kaolin of proper temperature and time is effective in compressive strength, salt resistance and acid resistance. The adaptability of activated kaolin as a cement admixture was shown through this research.

  • PDF

Fundamental Physical Properties of Cement Composites Containing Fineness Reject Ash (고분말 리젝트애시를 혼입한 시멘트복합체의 기본물성에 관한 연구)

  • Lee, Kang-Pil;Hong, Man-Gi;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2011
  • This study considerated reject ash, wastes of coal-fired power plants, to use mineral admixtures for cement. The pozzolan activity selected the fineness of the efficient reject ash through comparison and it compared to the fly ash that are widely used for concrete mixed material. Cement composites was prepared replacing of slag cement by fineness reject ash and fly ash, and properties of cement composites was tested by paste(setting time, fluidity, instrumental analysis) and mortar(compressive strength). Instrumental analysis results showed hydration reaction of fineness reject ash was not different from fly ash, but had more dense micro structures. Results of physical properties showed fineness reject ash shorten setting time, increased compressive strength compared by fly ash. Therefore using fineness reject ash with $6,000cm^2$/g to concrete mineral admixtures or cement composites was might be possible and could contribute to improve properties of concrete.

Evaluation of Magnesia Cement Using MgCO3 and Serpentine (MgCO3와 사문석을 사용한 마그네시아 시멘트의 특성평가)

  • Lee, Jong-Kyu;Soh, Jung-Sub;Chu, Yong-Sik;Song, Hun;Park, Ji-Sun
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.598-603
    • /
    • 2012
  • MgO based cement for the low-temperature calcination of magnesite required less energy and emitted less $CO_2$ than the manufacturing of Portland cements. Furthermore, adding reactive MgO to Portland-pozzolan cement can improve their performance and also increase their capacity to absorb atmospheric $CO_2$. In this study, the basic research for magnesia cement using $MgCO_3$ and magnesium silicate ore (serpentine) as starting materials was carried out. In order to increase the hydration activity, $MgCO_3$ and serpentinite were fired at a temperature higher than $600^{\circ}C$. In the case of $MgCO_3$ as starting material, hydration activity was highest at $700^{\circ}C$ firing temperature; this $MgCO_3$ was completely transformed to MgO after firing. After the hydration reaction with water, MgO was totally transformed to $Mg(OH)_2$ as hydration product. In the case of using only $MgCO_3$, compressive strength was 35 $kgf/cm^2$ after 28 days. The addition of silica fume and $Mg(OH)_2$ led to an enhancements of the compressive strength to 55 $kgf/cm^2$ and 50 $kgf/cm^2$, respectively. Serpentine led to an up to 20% increase in the compressive strength; however, addition of this material beyond 20% led to a decrease of the compressive strength. When we added $MgCl_2$, the compressive strength tends to increase.

Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique (활성기법을 통한 풍화된 장석의 반응성 개선 특성)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Feldspar, along with Quartz, are the most frequently produced minerals in Korea; however, the potential value is estimated to be significantly low because of the scarce research on the development and application of material properties, except for their limited use in manufacturing minerals, glass, and paints. In this study, we analyzed the eco-friendly material and reactivity improvement characteristics of weathered feldspar through activation technique. The joint structural features observed on the surface of the weathered feldspar show that the joint arrangements are irregularly distributed, and the cavities are interconnected. Due to the irregularly connected cavities on the surface of weathered feldspar, the reaction area of the weathered feldspar is increased; hence the weathered feldspar is considered as a highly reactive pozzolan material when combined with cement. As a result of applying the thermal, mechanical, and chemical activation techniques to improve the functionality of the weathered feldspar, the cation exchange capacity, density, and uniaxial compression strength characteristics were improved. It is considered that weathered feldspar by these porous characteristics can be used as an eco-friendly construction material with excellent physical and chemical properties.

Strength Development and Drying Shrinkage in Recycled Coal-Ash Building Material (석탄회를 재활용한 건설소재의 강도발현 및 건조수축)

  • Jo, Byung-Wan;Kim, Young-Jin;Park, Jong-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.670-678
    • /
    • 2003
  • Recently, since industrial waste and life waste leaped into a pollution source, the building material used now a days is striking the limit. The purpose of this paper is to investigate an application of recycled coal ash using non-sintering method in the construction field. Accordingly, compressive strength, elastic modulus and drying shrinkage were experimentally studied for hardened coal ash using the non-sintering method. Also, Lineweaver and Burk method were applied to the regression analysis of drying shrinkage for the proposal equation. Elastic modulus, compressive strength of material become the basis properties of structural design. And these properties by age for hardened coal ash are important because of change by pozzolan reaction. This hardened coal ash is weak for tensile stress like that of concrete. And drying shrinkage is very important factor to make huge tensile force in early age. In the results, although some differences were shown when comparing coal ash with mortar or concrete, the application as a building material turned out to be possible if further researches were carried out. And the shrinkage characteristic of hardened coal-ash reveals to be similar to that of moderate heat cement.

Evaluation of Time-Dependent Chloride Resistance in HPC Containing Fly Ash Cured for 1 Year (1년 양생 조건의 Fly Ash를 혼입한 고성능 콘크리트의 시간의존적 염해저항성 평가)

  • Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.52-59
    • /
    • 2018
  • To control chloride attacks which is a representative deterioration in RC(Reinforced Concrete) structures, many studies have been conducted. Above all, a method using mineral admixture was known to be effective for corrosion protection. In this study, durability test about chloride attacks was carried out for concrete specimens containing FA(Fly Ash)-representative concrete mineral admixture and OPC concrete specimens considering 3 different levels of W/B(Water to Binder). Accelerated chloride diffusion coefficient tests referred to Tang's method, total passed charge tests referred to ASTM C 1202, and compressive strength tests based on KS F 2405 were performed at each target age day. Also, based on previous studies of 28 days, time-parameter which is a key parameter for diffusion behavior is evaluated and its relations with compressive strength at the age of 365 days is evaluated. After the age of 49 days, chloride resistance of FA concrete is much improved than that of OPC concrete, which arose out of stable hydrates due to pozzolan reaction of fly ash. Time-parameter of FA concrete is evaluated to be about 1.5 times larger than that of OPC concrete. Also, time-parameter of FA concrete has a linearly decreasing relation while that of OPC concrete has a linearly increasing relation with compressive strength development.

Analysis of the Effect of Superplasticizer combined CASB on Ultra High Strength Mortar and Concrete Using Mineral Admixture (광물질 혼화재 사용 초고강도 모르타르 및 콘크리트에 CASB 화합 고성능감수제의 효과분석)

  • Han, Cheon-Goo;Yoo, Seung-Yeup
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • This study is performed to analyze the effects of CASB by applying the superplasticizer combined CASB on the ultra high strength mortar and concrete that uses different mineral admixture depending on whether the silica fume was used and the results are summarized below. From the characteristics of Fresh mortar and concrete, the fluidity was lower in B2-CASB than B2-PC from the mixing of CASB and based on the viscosity of the mortar and concrete in the binary proportion but in the ternary proportion, B3-CASB showed a larger fluidity than B3-PC because of a reduction in the restriction level due to the effects of an improvement of particle size distribution. The compression strength was higher in ternary proportion than in binary proportion and higher in CASB than in PC from the characteristics of hardening mortar and concrete and this is analyzed as a result of increased minuteness from the calcium silicate hydrates produced from the pozzolan reaction of a mineral admixture, SF, and also the charging effects of capillary pore of CASB. Overall, when using the nanomaterial, CASB in combination with a superplasticizer, the fluidity and the strength aspects of the ternary proportion of ultra high strength mortar and concrete with silica fume may be improved to a higher quality.

  • PDF