• Title/Summary/Keyword: power-law function

Search Result 282, Processing Time 0.025 seconds

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

A Study of Power Law Distribution of Korean Disaster and Identification of Focusing Events (한국 재난의 멱함수분포와 사회적 충격사건에 관한 연구)

  • Kim, Yongkyun;Kim, Sang Pil;Cho, Hyoung-Sig;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.181-190
    • /
    • 2016
  • Improvements in disaster management has become a global necessity because the magnitude of disasters is intensifying in parallel with the increased disaster damage. The disaster risk in Korea is also increasing due to the emergence of new types of disaster; such as the Middle East respiratory syndrome coronavirus, the increase of complex disasters, and the heightened probability of a catastrophic event due to climate change. This paper aimed to identify the disaster loss-frequency relationship from 1948 to 2014 in Korea by using four types of variables. In addition, this paper found major disasters that resulted in the reformation of disaster response organizations, and inputted the deaths and economic loss attributed to those disasters into the disaster loss-frequency graph. The research result substantiated that the disaster loss-frequency relationship in Korea follows the Power Law and found the coefficients of each Power Function. Additionally, this paper found that most of the reformations of disaster response organizations happened after major disasters that concentrated societies attention and anger due to the high human and economic impact; such events are labelled as "focusing events." These focusing events, with the characteristics of a low probability and high impact, are located in the long tail of the Power Law Distribution. This paper suggests that the effective public policy for disaster response needs to be developed by paying attention to 'low probability and high impact' focusing events that are located in the long tail of the Power Law Distribution.

The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Musa-Okumo and Power-law Type (Musa-Okumoto와 Power-law형 NHPP 소프트웨어 신뢰모형에 관한 통계적 공정관리 접근방법 비교연구)

  • Kim, Hee-Cheul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.483-490
    • /
    • 2015
  • There are many software reliability models that are based on the times of occurrences of errors in the debugging of software. It is shown that it is possible to do likelihood inference for software reliability models based on finite failure model and non-homogeneous Poisson Processes (NHPP). For someone making a decision about when to market software, the conditional failure rate is an important variables. The infinite failure model are used in a wide variety of practical situations. Their use in characterization problems, detection of outlier, linear estimation, study of system reliability, life-testing, survival analysis, data compression and many other fields can be seen from the many study. Statistical process control (SPC) can monitor the forecasting of software failure and thereby contribute significantly to the improvement of software reliability. Control charts are widely used for software process control in the software industry. In this paper, proposed a control mechanism based on NHPP using mean value function of Musa-Okumo and Power law type property.

Damping Control Strategy and Analysis Model of Static Synchronous Series Compensator(SSSC) (Static Synchronous Series Compensator(SSSC) 댐핑 제어 및 해석모형)

  • Kim, Hak-Man;Chun, Yeong-Han;Oh, Tae-Kyoo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.509-515
    • /
    • 2000
  • This paper addresses a damping control strategy of Static Synchronous Series Compensator(SSSC) and analysis model for stability study. The effect of injected voltage source generated by SSSC is modelled as equivalent load. This model is thought to be reasonable for the stability study because the dynamics of SSSC is very fast compared with that of power system. Damping controller of SSSC is based on Transient Energy Function method. The proposed control strategy is insensitive to the operating conditions like power flow level because control law depends on the phase angles. The proposed analysis model and control strategy was confirmed by WSCC 9 bus system and two area system. Especially, the robustness of proposed control strategy is demonstrated with respect to multiple operating conditions in two area system.

  • PDF

ON THE LONG TIME SPECTRAL VARIABILITY OF NGC 5548

  • ISMAILOV, NARIMAN Z.;BASHIROVA, ULVIYYE Z.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.531-533
    • /
    • 2015
  • We have investigated the long term variability of the intensities of the broad-line region emission lines in the UV spectra of Seyfert I galaxy NGC 5548 from 1973-1996. We have obtained the following results: 1) a high level correlation between the intensities of emission lines as well as between intensities of emission lines and continuum fluxes was discovered. With increasing wavelength the correlation in both cases becomes weaker, 2) the relationship between the intensity of emission lines and the flux radiation in the continuum can be expressed by a power law function with coefficients of ${\alpha}{\approx}0.8-1.1$ for different lines. When the difference between the wavelengths of spectral lines and the continuum is increased, the value of the power function decreases, and 3) it was found that the magnitude of the variability of the line intensities are weaker than the range of variability of the continuum fluxes. The magnitude of the variability of the line intensities and the continuum fluxes increase at longer wavelengths.

GALAXY CORRELATION IN A BUBBLY UNIVERSE

  • Ryu, Dong-Su
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.25-30
    • /
    • 1992
  • Recent redshift surveys suggest that most galaxies may be distributed on the surfaces of bubbles surrounding large voids. To investigate the quantitative consistency of this qualitative picture of large-scale structure, we study analytically the clustering properties of galaxies in a universe filled with spherical shells. In this paper, we report the results of the calculations for the spatial and angular two-point correlation functions of galaxies. With ${\sim}20%$ of galaxies in clusters and a power law distribution of shell sizes, $n_{sh}(R){\sim}R^{-{\alpha}}$, ${\alpha}\;{\simeq}\;4$, the observed slope and amplitude of the spatial two-point correlation function ${\xi}_{gg}(r)$ can be reproduced. (It has been shown that the same model parameters reproduce the enhanced cluster two-point correlation function, ${\xi}_{cc}(r)$). The corresponding angular two-point correlation function $w({\theta})$ is calculated using the relativistic form of Limber's equation and the Schecter-type luminosity function. The calculated w(${\theta}$) agrees with the observed one quite well on small separations (${\theta}{\lesssim}2deg$).

  • PDF

The long-term centimeter variability of active galactic nuclei: A new relation between variability timescale and black hole mass

  • Park, Jongho;Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.36.2-37
    • /
    • 2016
  • We study the long-term radio variability of 43 radio bright AGNs by exploiting the data base of the University of Michigan Radio Astronomy Observatory (UMRAO) monitoring program. The UMRAO database provides high quality lightcurves spanning 25 - 32 years in time at three observing frequencies, 4.8, 8, and 14.5 GHz. We model the periodograms (temporal power spectra) of the observed lightcurves as simple power-law noise (red noise, spectral power $P(f){\propto}f^{-{\beta}}$ using Monte Carlo simulations, taking into account windowing effects (red-noise leak, aliasing). The power spectra of 39 (out of 43) sources are in good agreement with the models, yielding a range in power spectral index (${\beta}$) from ${\approx}1$ to ${\approx}3$. We find a strong anti-correlation between ${\beta}$ and the fractal dimension of the lightcurves, which provides an independent check of the quality of our modelling of power spectra. We fit a Gaussian function to each flare in a given lightcurve to obtain the flare duration. We discover a correlation between ${\beta}$ and the median duration of the flares. We use the derivative of a lightcurve to obtain a characteristic variability timescale which does not depend on the assumed functional form of the flares, incomplete fitting, and so on. We find that, once the effects of relativistic Doppler boosting on the observed timescales are corrected, the variability timescales of our sources are proportional to the black hole mass to the power of ${\alpha}=1.70{\pm}0.49$. We see an indication for AGNs in different regimes of accretion rate, flat spectrum radio quasars and BL Lac objects, having different scaling relations with ${\alpha}{\approx}1$ and ${\approx}2$, respectively. We find that modelling the periodograms of four of our sources requires the assumption of broken powerlaw spectra. From simulating lightcurves as superpositions of exponential flares we conclude that strong overlap of flares leads to featureless simple power-law periodograms of AGNs at radio wavelengths in most cases (The paper is about to be submitted to ApJ).

  • PDF

Comparative investigation of endurance and bias temperature instability characteristics in metal-Al2O3-nitride-oxide-semiconductor (MANOS) and semiconductor-oxide-nitride-oxide-semiconductor (SONOS) charge trap flash memory

  • Kim, Dae Hwan;Park, Sungwook;Seo, Yujeong;Kim, Tae Geun;Kim, Dong Myong;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.449-457
    • /
    • 2012
  • The program/erase (P/E) cyclic endurances including bias temperature instability (BTI) behaviors of Metal-$Al_2O_3$-Nitride-Oxide-Semiconductor (MANOS) memories are investigated in comparison with those of Semiconductor-Oxide-Nitride-Oxide-Semiconductor (SONOS) memories. In terms of BTI behaviors, the SONOS power-law exponent n is ~0.3 independent of the P/E cycle and the temperature in the case of programmed cell, and 0.36~0.66 sensitive to the temperature in case of erased cell. Physical mechanisms are observed with thermally activated $h^*$ diffusion-induced Si/$SiO_2$ interface trap ($N_{IT}$) curing and Poole-Frenkel emission of holes trapped in border trap in the bottom oxide ($N_{OT}$). In terms of the BTI behavior in MANOS memory cells, the power-law exponent is n=0.4~0.9 in the programmed cell and n=0.65~1.2 in the erased cell, which means that the power law is strong function of the number of P/E cycles, not of the temperature. Related mechanism is can be explained by the competition between the cycle-induced degradation of P/E efficiency and the temperature-controlled $h^*$ diffusion followed by $N_{IT}$ passivation.

Empirical Correlations for Penetration Height of Liquid Jet in Uniform Cross Flow - A Review

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.16 no.4
    • /
    • pp.176-185
    • /
    • 2011
  • The empirical correlations for the prediction of penetration height of liquid jet in crossflow are reviewed and classified in this study. Around thirty different correlations had been proposed by many investigators. It has generally known that the penetration height of a liquid jet in a cross-flow is a function of the liquid to air momentum flux ratio and the normalized downstream distance from the injector. However, several researchers incorporated the Weber number, liquid-to-water or air viscosity ratio, pressure ratio or Reynolds number, temperature ratio in the empirical correlations. The existing correlations can be grouped as correlations in a power-law, logarithmic, and exponential forms, respectively. Correlations in a power-law form can be further classified as three groups such as basic form, Weber number form and other parameters form. It should be pointed out that correlations in a logarithmic form in terms of Weber number or any other parameters could not be found. Universal correlation has still not been established due to the significant discrepancies between various correlations suggested to date. Several of the studies reported the significant discrepancies of predicted values by the existing correlations. The possible reasons for discrepancies will be summarized as measurement technique, assumptions made in defining terms in the liquid to air momentum flux ratio, difficulties in defining the boundaries of the liquid jets, and nozzle/injector geometry. Evaluation of validity for the correlations proposed recently by several investigators is essentially required. Those include eight power-law forms, two logarithmic forms, and one exponential form.

LFC Considering the Changing Rate of Governor Speed (조속기 입력의 변화율을 고려한 최적주파수 제어)

  • 박영문;유찬수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.3
    • /
    • pp.100-105
    • /
    • 1984
  • The optimal Load-Frequency Control law is presented with the performance criterion which includes the changing rate of governor speed. The authors propose two controllers. One is a dynamic controller using the method of state augmentation and the other is a constant gain controller with use of the trace function lemma by Kleinman. For a more practical realization, a reduced-order Luenberger observer is applied in order to identify unmeasurable states and power demand. The control schemees presented here are tested through the model developed by Elgerd, and the usefulness is demonstrated.

  • PDF