• Title/Summary/Keyword: power voltage

Search Result 13,377, Processing Time 0.04 seconds

Influence of Gd0.1Ce0.9O2-δ Interlayer between La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode and Sc-doped Zirconia Electrolyte on the Electrochemical Performance of Solid Oxide Fuel Cells (La0.6Sr0.4Co0.2Fe0.8O3-δ 공기극과 Sc이 도핑된 지르코니아 전해질 사이에 삽입한 Gd0.1Ce0.9O2-δ 중간층이 고체산화물 연료전지의 전기화학적 성능에 미치는 영향)

  • Lim, Jinhyuk;Jung, Hwa Young;Jung, Hun-Gi;Ji, Ho-Il;Lee, Jong-Ho
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.378-387
    • /
    • 2018
  • The optimal fabrication conditions for $Gd_{0.1}Ce_{0.9}O_{2-{\delta}}$(GDC) buffer layer and $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ (LSCF) cathode on 1mol% $CeO_2-10mol%\;Sc_2O_3$ stabilized $ZrO_2$ (CeScSZ) electrolyte were investigated for application of IT-SOFCs. GDC buffer layer was used in order to prevent undesired chemical reactions between LSCF and CeScSZ. These experiments were carried out with $5{\times}5cm^2$ anode supported unit cells to investigate the tendencies of electrochemical performance, Microstructure development and interface reaction between LSCF/GDC/CeScSZ along with the variations of GDC buffer layer thickness, sintering temperatures of GDC and LSCF were checked, respectively. Electrochemical performance was analyzed by DC current-voltage measurement and AC impedance spectroscopy. Microstructure and interface reaction were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Although the interfacial reaction between these materials could not be perfectly inhibited, We found that the cell, in which $6{\mu}m$ GDC interlayer sintered at $1200^{\circ}C$ and LSCF sintered at $1000^{\circ}C$ were applied, showed good interfacial adhesions and effective suppression of Sr, thereby resulting in fairly good performance with power density of $0.71W/cm^2$ at $800^{\circ}C$ and 0.7V.

A Study on Detection Algorithm of Open Phase Fault in Grid-Connected Transformer for PV System (태양광전원 연계용변압기의 결상사고 검출 알고리즘에 관한 연구)

  • Kang, Kab-Seok;Tae, Dong-Hyun;Lee, Hu-Dong;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.22-33
    • /
    • 2021
  • In the case of open phase faults caused by the disconnection of distribution feeders interconnected to a PV system, many problems can occur depending on the core type and wiring method of the grid-connected transformers. Moreover, open phase faults are difficult to detect because the open phase voltage of the existing protection relay (Open Phase Relay (47)) can be maintained, even though a disconnection fault occurred, depending on the wiring method and the iron core type of the grid-connected transformer for a PV system. Therefore, this paper proposes a novel algorithm to detect open phase faults by comparing the currents and phases between the primary and secondary sides of a grid-connected transformer. In addition, this paper presents the modeling of a distribution system and protection devices for detecting open phase faults using PSCAD/EMTDC S/W, and implements a test protection device for detecting open phase faults based on the above-mentioned modeling. The simulation and test results confirmed that the proposed algorithm is useful for detecting open phase faults according to the wiring method and iron core type of grid-connected transformer for a PV system because operation slope and unbalance rate of the primary current exceed the setting value (30[%]) of the protection device.

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

A 0.2V DC/DC Boost Converter with Regulated Output for Thermoelectric Energy Harvesting (열전 에너지 하베스팅을 위한 안정화된 출력을 갖는 0.2V DC/DC 부스트 변환기)

  • Cho, Yong-hwan;Kang, Bo-kyung;Kim, Sun-hui;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.565-568
    • /
    • 2014
  • This paper presents a 0.2V DC/DC boost converter with regulated output for thermoelectric energy harvesting. To use low voltages from a thermoelectric device, a start-up circuit consisting of native NMOS transistors and resistors boosts an internal VDD, and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VSTO is achieved by alternately operating the sub-boost converter for VDD and the main boost converter for VSTO according to the comparator outputs. When the VSTO reaches 2.4V, a buck converter starts to operate to generate a stabilized output VOUT. Simulation results shows that the designed converter generates a regulated 1.8V output from an input voltage of 0.2V, and its maximum power efficiency is 60%. The chip designed using a $0.35{\mu}m$ CMOS process occupies $1.1mm{\times}1.0mm$ including pads.

  • PDF

Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters (박막레그 직경에 따른 열전박막모듈의 열에너지 하비스팅 특성 비교)

  • Kim, Woo-Jun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.67-74
    • /
    • 2018
  • Thermoelectric thin film modules were fabricated by electroplating p-type $Sb_2Te_3$and n-type $Bi_2Te_3$ thin film legs with the same thickness of $20{\mu}m$ and different diameters of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$, respectively. The output voltage and output power of thin film modules were measured and compared as a function of the leg diameter. The modules processed with thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter exhibited open circuit voltages of 365 mV at ${\Delta}T=36.7K$, 142 mV at ${\Delta}T=37.5K$, and 53 mV at ${\Delta}T=36.1K$, respectively. Maximum output powers of $845{\mu}W$ at ${\Delta}T=36.7K$, $631{\mu}W$ at ${\Delta}T=37.5K$, and $276{\mu}W$ at ${\Delta}T=36.1K$ were obtained for the modules fabricated with the thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter, respectively.

Principle of restoration ecology reflected in the process creating the National Institute of Ecology

  • Kim, A. Reum;Lim, Bong Soon;Seol, Jaewon;Lee, Chang Seok
    • Journal of Ecology and Environment
    • /
    • v.45 no.3
    • /
    • pp.105-116
    • /
    • 2021
  • Background: The creation of the National Institute of Ecology began as a national alternative project to preserve mudflats instead of constructing the industrial complexes by reclamation, and achieve regional development. On the other hand, at the national level, the research institute for ecology was needed to cope with the worsening conditions for maintaining biodiversity due to accelerated climate change such as global warming and increased demand for development. In order to meet these needs, the National Institute of Ecology has the following objectives: (1) carries out studies for ecosystem change due to climate change and biodiversity conservation, (2) performs ecological education to the public through exhibition of various ecosystem models, and (3) promotes regional development through the ecological industry. Furthermore, to achieve these objectives, the National Institute of Ecology thoroughly followed the basic principles of ecology, especially restoration ecology, in the process of its construction. We introduce the principles and cases of ecological restoration applied in the process. Results: We minimized the impact on the ecosystem in order to harmonize with the surrounding environment in all the processes of construction. We pursued passive restoration following the principle of ecological restoration as a process of assisting the recovery of an ecosystem degraded for all the space except in land where artificial facilities were introduced. Reference information was applied thoroughly in the process of active restoration to create biome around the world, Korean peninsula forests, and wetland ecosystems. In order to realize true restoration, we pursued the ecological restoration in a landscape level as the follows. We moved the local road 6 and high-voltage power lines to underground to ensure ecological connectivity within the National Institute of Ecology campus. To enhance ecological diversity, we introduced perch poles and islands as well as floating leaved, emerged, wetland, and riparian plants in wetlands and mantle communities around the forests of the Korean Peninsula in the terrestrial ecosystem. Furthermore, in order to make the public aware of the importance of the intact nature, the low-lying landscape elements, which have disappeared due to excessive land use in most areas of Korea, was created by imitating demilitarized zone (DMZ) landscape that has these landscape elements. Conclusions: The National Institute of Ecology was created in an eco-friendly way by thoroughly reflecting the principles of ecology to suit its status and thus the impact on the existing ecosystem was minimized. This concept was also designed to be reflected in the process of operation. The results have become real, and a result of analysis on carbon budget analysis is approaching the carbon neutrality.

A Study on Economic Evaluation Modeling of MVDC Distribution System for Hosting Capacity of PV System (태양광전원 수용을 위한 MVDC 배전망의 경제성평가 모델링에 관한 연구)

  • Lee, Hu-Dong;Kim, Ki-Young;Kim, Mi-Sung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2021
  • Technologies for an MVDC(medium voltage direct current) distribution system are being considered as an effective alternative to overcome the interconnection delay issues of PV systems. However, the implementation of a DC distribution system might lead to economic problems because of the development of DC devices. Therefore, this paper deals with the scale of a PV plant based on its capacity and proposes hosting-capacity models for PV systems to establish a network to evaluate the feasibility of an MVDC distribution system. The proposed models can be classified as AC and DC distribution systems by the power-supply method. PV systems with hundreds of MW, dozens of MW, and a few MW can be categorized as large-scale, medium-scale, and small-scale models, respectively. This paper also performed modeling for an economic evaluation of MVDC distribution system by considering both the cost of AC and DC network construction, converter replacement, operation, etc. The profit was composed of the SMP and REC rate of a PV plant. A simulation for economic evaluation was done for the MVDC distribution system using the present worth and equal-principal costs repayment method. The results confirmed that the proposed model is a useful tool to evaluate economic issues of a DC distribution system.

Optimization of Solar Water Battery for Efficient Photoelectrochemical Solar Energy Conversion and Storage (효율적인 광전기화학적 태양에너지 전환과 저장을 위한 Solar Water Battery의 최적화)

  • Go, Hyunju;Park, Yiseul
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • A solar water battery is a system that generates power using solar energy. It is a combination of photoelectrochemical cells and an energy storage system. It can simultaneously convert and store solar energy without additional external voltage. Solar water batteries consist of photoelectrodes, storage electrodes and counter electrodes, and their properties and combination are important for the performance and the efficiency of the system. In this study, we tried to find the effect that changing the components of solar water batteries has on its system. The effects of the counter electrode during discharge, the kinds of photoelectrode and storage electrode materials, and electrolytes on the solar energy conversion and storage capacitance were studied. The optimized composition (TiO2 : NaFe-PB : Pt foil) exhibited 72.393 mAh g-1 of discharge capacity after 15 h of photocharging. It indicates that the efficiency of solar energy conversion and storage is largely affected by the configuration of the system. Also, the addition of organic pollutants to the chamber of the photoelectrode improved the battery's photo-current and discharge capacity by efficient photoelectron-hole pair separation with simultaneous degradation of organic pollutants. Solar water batteries are a new eco-friendly solar energy conversion and storage system that does not require additional external voltages. It is also expected to be used for water treatment that utilizes solar energy.

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

Analysis of Passing Word Line Induced Leakage of BCAT Structure in DRAM (BCAT구조 DRAM의 패싱 워드 라인 유도 누설전류 분석)

  • Su Yeon, Kim;Dong Yeong Kim;Je Won Park;Shin Wook Kim;Chae Hyuk Lim;So won Kim;Hyeona Seo;Ju Won Kim;Hye Rin Lee;Jeong Hyeon Yun;Young-Woo Lee;Hyoung-Jin Joe;Myoung Jin Lee
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.644-649
    • /
    • 2023
  • As the cell spacing decreases during the scaling process of DRAM(Dynamic Random Access Memory), the reduction in STI(Shallow Trench Isolation) thickness leads to an increase in sub-threshold leakage due to the passing word line effect. The increase in sub-threshold leakage current caused by the voltage applied to adjacent passing word lines affects the data retention time and increases the number of refresh operations, thereby contributing to higher power consumption in DRAM. In this paper, we identify the causes of the passing word line effect through TCAD Simulation. As a result, we confirm the DRAM operational conditions under which the passing word line effect occurs, and observe that this effect alters the proportion of the total leakage current attributable to different causes. Through this, we recognize the necessity to consider not only leakage currents due to GIDL(Gate Induced Drain Leakage) but also sub-threshold leakage currents, providing guidance for improving DRAM structure.