Browse > Article
http://dx.doi.org/10.6117/kmeps.2018.25.4.067

Comparison of Thermal Energy Harvesting Characteristics of Thermoelectric Thin-Film Modules with Different Thin-Film Leg Diameters  

Kim, Woo-Jun (Department of Materials Science and Engineering, Hongik University)
Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.25, no.4, 2018 , pp. 67-74 More about this Journal
Abstract
Thermoelectric thin film modules were fabricated by electroplating p-type $Sb_2Te_3$and n-type $Bi_2Te_3$ thin film legs with the same thickness of $20{\mu}m$ and different diameters of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$, respectively. The output voltage and output power of thin film modules were measured and compared as a function of the leg diameter. The modules processed with thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter exhibited open circuit voltages of 365 mV at ${\Delta}T=36.7K$, 142 mV at ${\Delta}T=37.5K$, and 53 mV at ${\Delta}T=36.1K$, respectively. Maximum output powers of $845{\mu}W$ at ${\Delta}T=36.7K$, $631{\mu}W$ at ${\Delta}T=37.5K$, and $276{\mu}W$ at ${\Delta}T=36.1K$ were obtained for the modules fabricated with the thin film legs of $100{\mu}m$, $300{\mu}m$, and $500{\mu}m$-diameter, respectively.
Keywords
thermoelectrics; energy harvesting; leg diameter; thin film; electrodeposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 R. Rostek, J. Kottmeier, M. Kratschmer, G. Blackburn, F. Goldschmidtboing, M. Kroner, and P. Woias, "Thermoelectric Characterization of Electrochemically Deposited $Bi_2Te_3$ Films Accounting for the Presence of Conductive Seed Layers", J. Electrochem. Soc., 160, D408 (2013).   DOI
2 H. P. Nguyen, J. Su, Z. Wang, R. J. M. Vullers, P. M. Vereecken, and J. Fransaer, "Measurement of Seebeck Coefficient of Electroplated Thermoelectric Films in Presence of a Seed Layer", J. Mater. Res., 26, 1953 (2011).   DOI
3 K. J. Shin, and T. S. Oh, "Thermoelectric Power-generation Characteristics of a Thin-film Device Processed by the Flipchip Bonding of $Bi_2Te_3$ and $Sb_2Te_3$ Thin-film Legs using an Anisotropic Conductive Adhesive", Mater. Trans., 56(10), 1719 (2015).   DOI
4 W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, "$Bi_2Te_3$-Based Flexible Micro Thermoelectric Generator With Optimized Design", J. Microelectromech. Syst., 18, 763 (2009).   DOI
5 J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016).   DOI
6 R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009).   DOI
7 T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A, 145-146, 423 (2008).   DOI
8 W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013).
9 W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A, 132, 337 (2006).   DOI
10 A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017).   DOI
11 J. H. Ji, G. H. Jo, J. G. Ha, S. M. Koo, M. Kamiko, J. H. Hong, and J. H. Koh, "Recycled Thermal Energy from High Power Light Emitting Diode Light Source", J. Nanosci. Nanotechnol., 18, 6029 (2018).   DOI
12 J. Duga, M. Knap, and T. C. Lui, "Energy Harvested LED Luminary", Proc. 20th International Workshop on Thermal Investigations of ICs and Systems, London, IEEE (2014).
13 G. J. Snyder, J. R. Lim, C. -K. Huang, and J. -P. Fleurial, "Thermoelectric Microdevice Fabricated by a MEMS-like Electrochemical Process", Nat. Mater., 2, 528 (2003).   DOI
14 P. Mahalakshmi, and S. Kalaiselvi, "Energy Harvesting from Human Body using Thermoelectric Generator", Inter. J. Adv. Res. Electric. Electron. Instrum. Eng., 3(5), 9486 (2014).
15 J. A. Paradiso, and T. Starner, "Energy Scavenging for Mobile and Wireless Electronics", IEEE Pervasive Computing, 4(1), 18 (2005).
16 M. Y. Kim, and T. S. Oh, "Thermoelectric Power Generation Characteristics of a Thin-Film Device Consisting of Electrodeposited n-$Bi_2Te_3$ and p-$Sb_2Te_3$ Thin-film Legs", J. Electron. Mater., 42, 2752 (2013).   DOI
17 D. H. Park, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te_{0.9}Se_{0.1})_3$ Processed by Hot Pressing with Dispersion of 0.5 vol% $TiO_2$ Nanopowders", J. Microelectron. Packag. Soc., 20(1), 15 (2013).   DOI
18 M. Y. Kim, and T. S. Oh, "Thermoelectric Thin Film Device of Cross-plane Configuration Processed by Electrodeposition and Flip-chip Bonding", Mater. Trans., 53(12) 2160 (2012).   DOI
19 J. P. Carmo, J. F. Ribeiro, M. F. Goncalves, and J. H. Correia, "Thermoelectric Generator and Solid-state Battery for Standalone Microsystems", J. Micromech. Microeng., 20, 1 (2010).
20 J. M. Bae, M. Y. Kim, and T. S. Oh, "Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films", J. Microelectron. Packag. Soc., 19(1), 33 (2012).   DOI
21 J. P. Rojasa, D. Singh, S. B. Inayat, G. A. Torres Sevilla, H. M. Fahad, and M. M. Hussain, "Review-Micro and Nano-Engineering Enabled New Generation of Thermoelectric Generator Devices and Applications", ECS J. Solid State Sci. Technol., 6(3), N3036 (2017).   DOI
22 A. Z. Sahin, and B. S. Yibas, "The Thermoelement as Thermoelectric Power Generator: Effect of Leg Geometry on the Efficiency and Power Generation", Energy Convers. Manag., 65, 26 (2013).   DOI
23 D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2010).
24 M. R. Roh, J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the Hot-pressed $Bi_2(Te_{0.9}Se_{0.1})_3$ with Dispersion of Tungsten Powders", J. Microelectron. Packag. Soc., 18(4), 55 (2011).   DOI
25 M. S. Dresselhaus, G. Dresselhaus, X. Sun, Z. Zhang, S. B. Cronin, T. Koga, J. Y. Ming, and G. Chen, "The Promise of Low-Dimensional Thermoelectric Materials", Microscale Thermophys. Eng., 3, 89 (1999).   DOI
26 H. Fateh, C. A. Baker, M. J. Hall, and L. Shi, "High Fidelity Finite Difference Model for Exploring Multi-parameter Thermoelectric Generator Design Space", Appl. Energy., 129, 373 (2014).   DOI
27 S. Kumar, S. D. Heister, X. Xu, and J. R. Salvador, "Optimization of Thermoelectric Components for Automobile Waste Heat Recovery Systems", J. Electric. Mater., 44(10), 3627 (2015).   DOI
28 F. Meng, L. Chen, and F. Sun, "Effects of Thermocouples' Physical Size on the Performance of the TEG-TEH System", Inter. J. Low Carbon Technol., 11, 375 (2016).   DOI
29 J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., and S. B. Warner, "The Science and Design of Engineering Materials", Inter. Ed., 577, Irwin, Chicago (1995).
30 K. J. Shin, and T. S. Oh, "Micro-power Generation Characteristics of Thermoelectric Thin Film Devices Processed by Electrodeposition and Flip-chip Bonding", J. Electron. Mater., 44(6), 2026 (2015).   DOI