• Title/Summary/Keyword: power transmission tower

Search Result 136, Processing Time 0.03 seconds

Development of the Technical Calculation System for Transmission Line in Myanmar (미얀마 송전선로 설계 기술계산시스템 개발)

  • Baik, Seung-Do;Min, Byeong-Wook;Kim, Jong-Hwa;Shin, Tai-Woo;Kim, Sae-Hyun;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.632-634
    • /
    • 2005
  • Korea takes part in overseas business by use of accumulated advanced technology through construction of the worlds first 765kV double circuit transmission system designed with pure local technology. 'Development Study on the Power System Network Analysis in Myanmar' was received in the year 2001 and was completed in the year 2002. The following project,'Feasibility Study and Basic Designs for the 500kV Transmission System in Myanmar' has been in progress since January, 2004. With regards to this project the master plan for the Myanmar long term power system was submitted in January 2005, and now the basic designs for the 500kV transmission system construction are in progress. Technical data for the design of the transmission line is calculated using a very complex numerical formula that is almost impossible to be completed by hand. So the transmission technical calculation system was developed to calculate and support Myanmar technical data for the design of transmission line with respect to factors such as wind prossure load, tower design data conductor design data and insulator design data on the basis of weather conditions for the Myamar transmission line design area of the Myanmar 500kV trans- mission line construction basic design.

  • PDF

Transmission Lines Rights-of-Way Mapping Using a Low-cost Drone Photogrammetry

  • Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • Electric transmission towers are facilities to transport electrical power from a plant to an electrical substation. The towers are connected using wires considering the wire tension and the clearance from the ground or nearby objects. The wires are installed on a rights-of-way that is a strip of land used by electrical utilities to maintain the transmission line facilities. Trees and plants around transmission lines must be managed to keep the operation of these lines safe and reliable. This study proposed the use of a low-cost drone photogrammetry for the transmission line rights-of-way mapping. Aerial photogrammetry is carried out to generate a dense point cloud around the transmission lines from which a DSM (Digital Surface Model) and DTM (Digital Terrain Model) are created. The lines and nearby objects are separated using nDSM (normalized Digital Surface Model) and the noises are suppressed in the multiple image space for the geospatial analysis. The experimental result with drone images over two spans of transmission lines on a mountain area showed that the proposed method successfully generate the rights-of-way map with hazard nearby objects.

Technology and Design Standards of 765kV 1cct Transmission Line (765kV 1회선 송전선로 기술기준 및 설계방안)

  • Sim, Soon-Bo;Min, Byeong-Wook;Park, K.H.;Jo, C.I.;Kim, J.Y.;Sin, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.80-82
    • /
    • 2002
  • To solve the difficulty in obtaining transmission routes and substation sites. increase the transmission capacity between generation sites and load centers. and enhance the stability of the power system. we have constructed and operated the 765kV double circuit transmission line(hereunder T/L) from the Dangjin thermal power plant and the Uljin nuclear power plant to the metropolitan. It makes it possible for us to accumulate know-how of the 765kV system that is the highest operating system level in Asia. As the second 765kV project, we are going to construct the 765kV single circuit T/L between Ansung and Gap yung. Because of the different electrical and mechanical characteristics. we are in need of different design technology. This paper presents the optimal design of 765kV single circuit transmission line after due consideration about the arrangement of conductors. the shape of a tower, insulation, etc.

  • PDF

Consideration on shielding failure and back flashover through lightning fault analysis within the country (국내에서 발생한 낙뢰고장 분석을 통한 직격뢰 및 역섬락 고찰)

  • Choi, Han-Yeol;Min, Byeong-Wook;Park, Soon-Kyu;Lee, Bong-Hee;Gu, Sung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.280_281
    • /
    • 2009
  • The past 3 years study on the lightning faults data shows that the main reason is shielding failure rather than back flashover. Accordingly, we need to thoroughly consider about shielding failure angle of tower. Also, transmission line damage caused by shielding can be minimized if we avoid the steep slope area as a transmission line route.

  • PDF

Development of Wireless lightning detecting and warning system (무선식 낙뢰통보시스템 개발)

  • Kim, Kyung-Man;Kwon, Tae-Woon;Sim, Kwang-Yeol;Kim, Se-Yeol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.500-503
    • /
    • 2006
  • This paper gives a Wireless lightning detecting and warning system. This system composed of transmitter and receiver. It promptly senses lightning strikes on the power lines and transmission towers by using the lightning current detection circuit in a small transmitter situated on the top of power tower, and it sends the number of lightning strikes and the ID. of the tower to patrols through the receivers. This system will be used to discover the exact location of a lightning strike.

  • PDF

Comparison on Characteristics between air-gap type and gapless In transmission LA (송전선로 피뢰기 적용 및 외부 갭형과 갭레스형의 동작특성 비교)

  • You, Hee-Young;Kim, Jong-Chae;Kim, Byeong-Heon;Park, Yoon-Seok;Lee, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.347-348
    • /
    • 2008
  • This paper presents the use of Line Surge Arresters on 154kV double circuit lines. The ouatge rate which is highly related to the tower footing resistance is showed during the last a few year. The general methods that have been adopted at lines also are introduced. Lightning performance of lines without and with line surge arrester is studied and compared. The characteristics between air-gap type and gapless type LSA also compared. Line surge arrester installation strategy is presented.

  • PDF

Typhoon damage analysis of transmission towers in mountainous regions of Kyushu, Japan

  • Tomokiyo, Eriko;Maeda, Junji;Ishida, Nobuyuki;Imamura, Yoshito
    • Wind and Structures
    • /
    • v.7 no.5
    • /
    • pp.345-357
    • /
    • 2004
  • In the 1990s, four strong typhoons hit the Kyushu area of Japan and inflicted severe damage on power transmission facilities, houses, and so on. Maximum gust speeds exceeding 60 m/s were recorded in central Kyushu. Although the wind speeds were very high, the gust factors were over 2.0. No meteorological stations are located in mountainous areas, creating a deficiency of meteorological station data in the area where the towers were damaged. Since 1995 the authors have operated a network for wind measurement, NeWMeK, that measures wind speed and direction, covering these mountainous areas, segmenting the Kyushu area into high density arrays. Maximum gusts exceeding 70 m/s were measured at several NeWMeK sites when Typhoon Bart (1999) approached. The gust factors varied widely in southerly winds. The mean wind speeds increased due to effects of the local terrain, thus further increasing gust speeds.

Practical optimization of power transmission towers using the RBF-based ABC algorithm

  • Taheri, Faezeh;Ghasemi, Mohammad Reza;Dizangian, Babak
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.463-479
    • /
    • 2020
  • This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.

Assessment of capacity curves for transmission line towers under wind loading

  • Banik, S.S.;Hong, H.P.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2010
  • The recommended factored design wind load effects for overhead lattice transmission line towers by codes and standards are evaluated based on the applicable wind load factor, gust response factor and design wind speed. The current factors and design wind speed were developed considering linear elastic responses and selected notional target safety levels. However, information on the nonlinear inelastic responses of such towers under extreme dynamic wind loading, and on the structural capacity curves of the towers in relation to the design capacities, is lacking. The knowledge and assessment of the capacity curve, and its relation to the design strength, is important to evaluate the integrity and reliability of these towers. Such an assessment was performed in the present study, using a nonlinear static pushover (NSP) analysis and incremental dynamic analysis (IDA), both of which are commonly used in earthquake engineering. For the IDA, temporal and spatially varying wind speeds are simulated based on power spectral density and coherence functions. Numerical results show that the structural capacity curves of the tower determined from the NSP analysis depend on the load pattern, and that the curves determined from the nonlinear static pushover analysis are similar to those obtained from IDA.

Analysis and Comparision of Measured and Calculated Value on Magnetic Fields Strength under Transmission Lines (초고압 송전선로의 자계크기 해석과 실측 비교)

  • Cho, Sung-Bae;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.832-838
    • /
    • 1999
  • Recently, there are growing concerns about power frequency electric and magnetic fields coming out from the high voltage transmission lines, because of the wide spread perception of their probable harmful effect on human body. In connection with this trend, this paper describes the electric and magnetic fields measurement result around 154 kV and 345 kV transmission lines, a comparison of measured EMF to calculated one and the correlations between transmission lines currents and measured magnetic fields. Daily maximum and minimum magnetic field quantities under the selected 154 kV and 345 kV transmission lines had been measured for 1 year of 1997 and the average value of magnetic field exposure under the lines were calculated and presented based on the measured data.

  • PDF