Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.4.463

Practical optimization of power transmission towers using the RBF-based ABC algorithm  

Taheri, Faezeh (Department of Civil Engineering, University of Sistan and Baluchestan)
Ghasemi, Mohammad Reza (Department of Civil Engineering, University of Sistan and Baluchestan)
Dizangian, Babak (Department of Civil Engineering, Velayat University)
Publication Information
Structural Engineering and Mechanics / v.73, no.4, 2020 , pp. 463-479 More about this Journal
Abstract
This paper is aimed to address a simultaneous optimization of the size, shape, and topology of steel lattice towers through a combination of the radial basis function (RBF) neural networks and the artificial bee colony (ABC) metaheuristic algorithm to reduce the computational time because mere metaheuristic optimization algorithms require much time for calculations. To verify the results, use has been made of the CIGRE Tower and a 132 kV transmission towers as numerical examples both based on the design requirements of the ASCE10-97, and the size, shape, and topology have been optimized (in both cases) once by the RBF neural network and once by the MSTOWER analyzer. A comparison of the results shows that the neural network-based method has been able to yield acceptable results through much less computational time.
Keywords
optimization; power transmission towers; steel lattice towers; RBF neural network; artificial bee colony (ABC) algorithm;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Hartman, E. J., Keeler, J. D. and Kowalski, J. M. (1990), "Layered neural networks with Gaussian hidden units as universal approximations", Neural Comput., 2(2), 210-215. https://doi.org/10.1162/neco.1990.2.2.210.   DOI
2 Hore, S., Chatterjee, S., Sarkar, S., Dey, N., Ashour, A. S., Balas-Timar, D. and Balas, V. E. (2016), "Neural-based prediction of structural failure of multistoried RC buildings", Struct. Eng. Mech., 58(3), 459-473. http://dx.doi.org/10.12989/sem.2016.58.3.459.   DOI
3 Huang, G. B., Saratchandran, P. and Sundararajan, N. (2005), "A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation", IEEE Transactions on Neural Networks, 16(1), 57-67. 10.1109/TNN.2004.836241   DOI
4 IEC 60652 (2002), Loading tests on overhead line structures, International Electrotechnical Commission, Geneva, Switzerland.
5 Karaboga, D. (2005), "An idea based on honey bee swarm for numerical optimization (Vol. 200)", Technical Report No. tr06; Erciyes University, Turkey.
6 Karaboga, D. and Basturk, B. (2007), "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm", J. Global Optim., 39(3), 459-471. https://doi.org/10.1007/s10898-007-9149-x.   DOI
7 Kaveh, A. and Ghazaan, M.I. (2018), "Optimal design of steel lattice transmission line towers", Meta-Heuristic Algorithms for Optimal Design of Real-Size Structures, Springer, Cham , 123-137.
8 Klansek, U., Silih, S. and Kravanja, S. (2006), "Cost optimization of composite floor trusses", Steel Compos. Struct., 6(5), 435-457. https://doi.org/10.12989/scs.2016.22.5.1163.   DOI
9 Lee, D. K., Kim, J. H., Starossek, U., & Shin, S. M. (2012), "Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization", Struct. Eng. Mech., 43(6), 711-724. https://doi.org/10.12989/sem.2012.43.6.711.   DOI
10 Mathakari, S., Gardoni, P., Agarwal, P., Raich, A. and Haukaas, T. (2007), "Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms", Computer-Aided Civil Infrastructure Eng., 22(4), 282-292. https://doi.org/10.1111/j.1467-8667.2007.00485.x.   DOI
11 Meng, K., Dong, Z. Y., Wang, D. H. and Wong, K.P. (2010), "A self-adaptive RBF neural network classifier for transformer fault analysis", IEEE T. Power Syst., 25(3), 10.1109/TPWRS.2010.2040491.
12 Natarajan, K. and Santhakumar, A.R. (1995), "Reliability-based optimization of transmission line towers", Comput. Struct., 55(3), 387-403. https://doi.org/10.1016/0045-7949(95)98866-O.   DOI
13 Noilublao, N. and Bureerat, S. (2011), "Simultaneous topology, shape and sizing optimisation of a three-dimensional slender truss tower using multiobjective evolutionary algorithms", Comput. Struct., 89(23-24), 2531-2538. https://doi.org/10.1016/j.compstruc.2011.08.010.   DOI
14 Paris, J., Martinez, S., Navarrina, F., Colominas, I. and Casteleiro, M. (2010), "Structural optimization of high tension towers", In Proceedings of the 2nd International Conference on Engineering Optimization, Lisbon, Portugal, September.
15 Poggio, T. and Girosi, F. (1990), "Networks for approximation and learning", Proceedings of the IEEE, 78(9), 1481-1497.   DOI
16 Qu, W. L., Chen, W. and Xiao, Y. Q. (2003), "A two-step approach for joint damage diagnosis of framed structures using artificial neural networks", Struct. Eng. Mech., 16(5), 581-595. https://doi.org/10.12989/sem.2003.16.5.581.   DOI
17 Rao, G.V. (1995), "Optimum designs for transmission line towers", Comput. Struct., 57(1), 81-92. https://doi.org/10.1016/0045-7949(94)00597-V.   DOI
18 Shea, K. and Smith, I.F. (2006), "Improving full-scale transmission tower design through topology and shape optimization", J. Struct. Eng., 132(5), 781-790. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(781).   DOI
19 Saxena, S. and Pathak, K.K. (2015), "Application of artificial neural networks for fully stressed design of Pratt and Howe Truss", New Technologies Sci. Eng., 2, 94-103.
20 Schilling, R.J., Carroll, J.J. and Al-Ajlouni, A.F. (2001), "Approximation of nonlinear systems with radial basis function neural networks", IEEE T. Neur. Net., 12(1), 10.1109/72.896792.
21 Sheppard, D.J. and Palmer, A.C. (1972), "Optimal design of transmission towers by dynamic programming", Comput. Struct., 2(4), 455-468. https://doi.org/10.1016/0045-7949(72)90001-6.   DOI
22 Sivakumar, P., Rajaraman, A., Samuel Knight, G.M. and Ramachandramurthy, D.S. (2004), "Object-oriented optimization approach using genetic algorithms for lattice towers", J. Comp. civil. Eng., 18(2), 162-171. https://doi.org/10.1061/(ASCE)0887-3801(2004)18:2(162).   DOI
23 Sonmez, M. (2011), "Discrete optimum design of truss structures using artificial bee colony algorithm", Struct. Multidiscip. O., 43(1), 85-97. https://doi.org/10.1007/s00158-010-0551-5.   DOI
24 Souza, R.R. Miguel, L.F.F, Lopez, R.H.(2014), "On the size and shape optimization of transmission line towers", Proceedings of Pan-American Congress of Applied Mechanics, Santiago, Chile, 24-28 March.
25 Souza, R. R., Miguel, L. F. F., Lopez, R. H., Miguel, L. F. F and Torii, A. J. (2016), "A procedure for the size, shape and topology optimization of transmission line tower structures", Eng. Struct., 111, 162-184. https://doi.org/10.1016/j.engstruct.2015.12.005.   DOI
26 Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Shi, F. and Le, D.N. (2017), "Structural failure classification for reinforced concrete buildings using trained neural network based multi-objective genetic algorithm", Struct. Eng. Mech., 63(4), 429-438. https://doi.org/10.12989/sem.2017.63.4.000.   DOI
27 Tang, C. W. (2006), "Using radial basis function neural networks to model torsional strength of reinforced concrete beams", Comput. Concrete, 3(5), 335-355. http://dx.doi.org/10.12989/cac.2006.3.5.335   DOI
28 Taniwaki, K. and Ohkubo, S. (2004), "Optimal synthesis method for transmission tower truss structures subjected to static and seismic loads", Struct. Multidiscip. O., 26(6), 441-454. https://doi.org/10.1007/s00158-003-0367-7.   DOI
29 ASCE 10-97 (2000), Design of latticed steel transmission line towers, American Society of Civil Engineers, U.S.A.
30 Belegundu, A.D. and Chandrupatla, T.R. (2014), Optimization Concepts and Applications in Engineering, Cambridge University Press, United Kingdom.
31 Cheng, J., Cai, C.S. and Xiao, R.C. (2007), "Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures", Struct. Eng. Mech., 26(3), 251-262. https://doi.org/10.12989/sem.2007.26.3.251.   DOI
32 Chunming, W. E., Tingting, S. U., Bin, M. A. and Jing, G. (2012), "Research on the optimal layout of high-strength steel in the transmission tower", Physics Procedia, 33, 619-625. https://doi.org/10.1016/j.phpro.2012.05.112.   DOI
33 Fiouz, A. R., Obeydi, M., Forouzani, H. and Keshavarz, A. (2012), "Discrete optimization of trusses using an artificial bee colony (ABC) algorithm and the fly-back mechanism", Struct. Eng. Mech., 44(4), 501-519. http://dx.doi.org/10.12989/sem.2012.44.4.501.   DOI
34 CIGRE (2009), Influence of the Hyperstatic Modeling on the Behavior of Transmission Line Lattice Structures, Conseil International des Grands Reseaux Electriques, Technical Brochure 387, Paris(1), 238.
35 Couceiro, I., Paris, J., Martinez, S., Colominas, I., Navarrina, F. and Casteleiro, M. (2016), "Structural optimization of lattice steel transmission towers", Eng. Struct., 117, 274-286. https://doi.org/10.1016/j.engstruct.2016.03.005.   DOI
36 Cui, L., Li, G., Zhu, Z., Lin, Q., Wen, Z., Lu, N., Ka-Chun, W. and Chen, J. (2017), "A novel artificial bee colony algorithm with an adaptive population size for numerical function optimization", Info. Sci., 414, 53-67. https://doi.org/10.1016/j.ins.2017.05.044.   DOI
37 Delgarm, N., Sajadi, B. and Delgarm, S. (2016), "Multi-objective optimization of building energy performance and indoor thermal comfort: A new method using artificial bee colony (ABC)", Energ. Buildings, 131, 42-53. https://doi.org/10.1016/j.enbuild.2016.09.003.   DOI
38 Dizangian, B., & Ghasemi, M. R. (2016), "An efficient method for reliable optimum design of trusses", Steel Compos. Struct., 21(5), 1069-1084. http://dx.doi.org/10.12989/scs.2016.21.5.1069.   DOI
39 Gao, W., Liu, S. and Huang, L. (2012), "A global best artificial bee colony algorithm for global optimization", J. Comput. Appl. Math., 236(11), 2741-2753. https://doi.org/10.1016/j.cam.2012.01.013.   DOI
40 Tort, C., Sahin, S. and Hasancebi, O. (2017), "Optimum design of steel lattice transmission line towers using simulated annealing and PLS-TOWER", Comput. Struct., 179, 75-94. https://doi.org/10.1016/j.compstruc.2016.10.017.   DOI
41 Tan, Z. X., Thambiratnam, D. P., Chan, T. H. T. and Razak, H. A. (2017), "Detecting damage in steel beams using modal strain energy based damage index and artificial neural network", Eng. Fail. Anal., 79, 253-262. https://doi.org/10.1016/j.engfailanal.2017.04.035.   DOI
42 Yi, T. H., Li, H. N. and Gu, M. (2011), "Optimal sensor placement for structural health monitoring based on multiple optimization strategies", The Structural Design of Tall and Special Buildings, 20(7), 881-900. https://doi.org/10.1002/tal.712.   DOI
43 Yi, T. H., Li, H. N. and Sun, H. M. (2013), "Multi-stage structural damage diagnosis method based on", Smart Struct. Syst., 12(3_4), 345-361.https://doi.org/10.12989/sss.2013.12.3_4.345.   DOI
44 Yi, T. H., Li, H. N. and Zhang, X. D. (2012), "A modified monkey algorithm for optimal sensor placement in structural health monitoring", Smart Mater. Struct., 21(10), 105033.   DOI
45 Yi, T. H., Zhou, G.D., Li, H. N. and Wang, C.W. (2017), "Optimal placement of triaxial sensors for modal identification using hierarchic wolf algorithm". Structural Control and Health Monitoring, 24(8), e1958. https://doi.org/10.1002/stc.1958.   DOI
46 Ghaboussi, J., & Wu, X. (1998), "Soft computing with neural networks for engineering applications: Fundamental issues and adaptive approaches", Struct. Eng. Mech., 6(8), 955-969. https://doi.org/10.12989/sem.1998.6.8.955.   DOI
47 Ghiasia, R. and Ghasemi, M.R. (2018), "Optimization-based method for structural damage detection with consideration of uncertainties-a comparative study", Smart Struct. Syst., 22(5), 561-574. https://doi.org/10.12989/sss.2018.22.5.561.   DOI
48 Guo, H. Y. and Li, Z. L. (2011), "Structural topology optimization of high-voltage transmission tower with discrete variables", Struct. Multidiscip. O., 43(6), 851-861. https://doi.org/10.1007/s00158-010-0561-3.   DOI