• Title/Summary/Keyword: power tower

Search Result 399, Processing Time 0.027 seconds

Performance control analysis of concrete-filled steel tube sepa-rated spherical joint wind power tower

  • Yang Wen;Guangmao Xu;Xiazhi Wu;Zhaojian Li
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.137-149
    • /
    • 2023
  • In this study, to explore the working performance of the CFST split spherical node wind power tower, two groups of CFST split spherical joint plane towers with different web wall thicknesses and a set of space systems were analyzed. The tower was subjected to a low-cycle repeated load test, and the hysteresis and skeleton curves were analyzed. ABAQUS finite element simulation was used for verification and comparison, and on this basis parameter expansion analysis was carried out. The results show that the failure mode of the wind power tower was divided into weld tear damage between belly bar, high strength bolt thread damage and belly rod flexion damage. In addition, increasing the wall thickness of the web member could render the hysteresis curve fuller. Finally, the bearing capacity of the separated spherical node wind power tower was high, but its plastic deformation ability was poor. The ultimate bearing capacity and ductility coefficient of the simulated specimens are positively correlated with web diameter ratio and web column stiffness ratio. When the diameter ratio of the web member was greater than 0.13, or the stiffness ratio γ of the web member to the column was greater than 0.022, the increase of the ultimate bearing capacity and ductility coefficient decreased significantly. In order to maximize the overall mechanical performance of the tower and improve its economy, it was suggested that the diameter ratio of the ventral rod be 0.11-0.13, while the stiffness ratio γ should be 0.02-0.022.

A Simulation of Lightning Faults Reducing Effects on the 154 kV Transmission Tower by Auxiliary Grounding (보조접지선 시공에 의한 송전선로의 내뢰성 향상효과 모의)

  • Kwak, Joo-Sik;Shim, Jeong-Woon;Shim, Eung-Bo;Choi, Jong-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1843-1846
    • /
    • 1997
  • This paper describes the fault reducing effects of the 154 kV transmission tower by auxiliary grounding from the top of the tower to ground. The grounding surge impedance of the auxiliary grounding system is calculated by CDEGS(:Current Distribution Electromagnetic Interference Grounding and Soil Structure Analysis), and the critical lightning back flashover current and arcing horn dynamic characteristics are simulated by EMTP/TACS(:Electromagnetic Transient Program/Transient Analysis of Control Systems). The calculated results of total LFOR(Lightning Flashover Rate) shows that the LFOR can be reduced from 5.2(count/100km. year) to 3.4 by auxiliary grounding on the 154 kV transmission tower with one ground wire shielding system.

  • PDF

A Study on Separation Distance Calculation Model for Limitation of Earth Potential Rise nearby Tower Footings (송전철탑 부근의 대지전위 억제를 위한 이적거리 산정모델 연구)

  • Choi, Jong-Kee;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.212-213
    • /
    • 2007
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system. In this paper, an analytical formula to calculate the requried sepeartion distance from the faulted tower has been derived.

  • PDF

Standards of Distance between Gas Pipeline and Tower Ground (가스배관과 철탑접지의 이격거리 관련 기준)

  • Lee, H.G.;Ha, T.H.;Ha, Y.C.;Bae, J.H.;Kim, D.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.18-22
    • /
    • 2007
  • The fault current through the earth originated from a power line ground fault might cause arcing through the soil to an adjacent pipeline, which might bring about not only a catastrophic accident such as gas explosion and oil leakage but also a hazard to the safety of workers responsible for the maintenance and repair of the pipeline. In this paper we investigated the arcing phenomena through soil between a power line tower and a pipeline and outlined the standards for the separation distance of a buried pipeline adjacent to the power line tower.

  • PDF

Analysis of Conductive Interference nearby High Voltage Power Lines under Fault Condition (송전선로 지락시 철탑 인근의 대지전위간섭 해석모델)

  • Choi, J.K.;Lee, W.K.;Ryu, H.Y.;Shin, B.H.;Son, K.M.;Kim, T.Y.;Hwang, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.466-467
    • /
    • 2008
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system.

  • PDF

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF

Optimum Design of a Wind Power Tower to Augment Performance of Vertical Axis Wind Turbine (수직축 풍력터빈 성능향상을 위한 풍력타워 최적설계에 관한 연구)

  • Cho, Soo-Yong;Rim, Chae Hwan;Cho, Chong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.177-186
    • /
    • 2019
  • Wind power tower has been used to augment the performance of VAWT (Vertical Axis Wind Turbine). However, inappropriately designed wind power tower could reduce the performance of VAWT. Hence, an optimization study was conducted on a wind power tower. Six design variables were selected, such as the outer radius and the inner radius of the guide wall, the adoption of the splitter, the inner radius of the splitter, the number of the guide wall and the circumferential angle. For the objective function, the periodic averaged torque obtained at the VAWT was selected. In the optimization, Design of Experiment (DOE), Genetic Algorithm (GA), and Artificial Neural Network (ANN) have been applied in order to avoid a localized optimized result. The ANN has been continuously improved after finishing the optimization process at each generation. The performance of the VAWT was improved more than twice when it operated within the optimized wind power tower compared to that obtained at a standalone.

Modeling wind ribs effects for numerical simulation external pressure load on a cooling tower of KAZERUN power plant-IRAN

  • Goudarzi, Mohammad-Ali;Sabbagh-Yazdi, Saeed-Reza
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.479-496
    • /
    • 2008
  • In this paper, computer simulation of wind flow around a single cooling tower with louver support at the base in the KAZERUN power station in south part of IRAN is presented as a case study. ANSYS FLOTRAN, an unstructured finite element incompressible flow solver, is used for numerical investigation of wind induced pressure load on a single cooling tower. Since the effects of the wind ribs on external surface of the cooling tower shell which plays important role in formation of turbulent flow field, an innovative relation is introduced for modeling the effects of wind ribs on computation of wind pressure on cooling tower's shell. The introduced relation which follows the concept of equivalent sand roughness for the wall function is used in conjunction with two equations ${\kappa}-{\varepsilon}$ turbulent model. In this work, the effects of variation in the height/spacing ratio of external wind ribs are numerically investigated. Conclusions are made by comparison between computed pressure loads on external surface of cooling tower and the VGB (German guideline for cooling tower design) suggestions.

Analysis of economy and load effect of hybrid tower for wind turbine (풍력발전용 하이브리드 타워 경제성 및 하중영향 분석)

  • Lee, Seunugmin;Park, Hyunchul;Chung, Chinwha;Kwon, Daeyong;Kim, Yongchun;Shi, Wei
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.185.2-185.2
    • /
    • 2010
  • With the development of wind industry, the rated power of wind turbine also increase gradually. Accordingly, the size of wind turbine tower becomes larger and larger. The tower base diameter of 2MW wind turbine is about 4m. Larger tower is expected for 4MW or 5MW turbine. Due to limitation of transportation, new type of tower with smooth transportation and effective cost is needed. In this work, a hybrid tower consisting of steel and concrete is designed and analyzed. The optimum ratio of steel and concrete of hybrid tower are calculated as well as the thickness of the concrete part. Different FE analysis including modal analysis, buckling analysis and fatigue analysis are performed to check the design of hybrid tower comparing with the steel tower. Redesign is also expected after various analysis.

  • PDF

A Study on the Environmental Effects of Compact Tower in Transmission Line (송전철탑 Compact화에 따른 전기환경 영향 연구)

  • Lee, Jung-Won;Lee, Won-Kyo;Lee, Dong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.645-650
    • /
    • 2010
  • The continuous increase demand for electric power leads to the additional construction of transmission facilities, but it is not easy to acquire right-of-way for transmission facilities. Therefor, there is a need for compact tower that can be built on a narrow right-of-way the compact tower with polymer insulation arm is a solution. It can be upgrading conventional 154 kV transmission line voltages to 345 kV levels. However transmission voltage is increasing, environment interference (corona noise, radio interference, etc.) will occur gradually. This environment interference is depending on the electrical clearances of tower and configuration of conductors. Therefore the analysis of the factors of environmental interference is necessary in order to upgrading transmission voltage. This paper presents the design factor of a compact tower to meet the environmental interference standard.