• Title/Summary/Keyword: power supplies

Search Result 587, Processing Time 0.023 seconds

Development of auxiliary power supply simulator for electric rolling stock (전기 철도차량용 보조전원장치 시뮬레이터 개발)

  • Kim Jae-Moon;Kim Duk-Heon;Kim Yeon-Chung;Lee Sang-Seok;Shin Seung-Kwon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.889-894
    • /
    • 2005
  • This paper describes the development of the auxiliary power supply simulator for electric rolling stock. Auxiliary power supplies are required for operating air conditioning units, ventilation fans, lighting and battery charging. From the baseline model of the SIV(Static InVerter) for electric rolling stock, we designed the scale down model of the auxiliary power supply simulator consisting of IGBT voltage source inverter. Auxiliary power supply simulator can be used educatory purpose to teach efficiently about operating principles of SIV

A review of the train position detection method for neutral section with energized condition (무절연구간을 위한 열차위치검지방식 검토)

  • Lee, Tae-Hoon;Lee, See-Bin;Hong, Hyun-Pyo;Lee, Hee-Soon;Park, Ki-Bum
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1100-1105
    • /
    • 2010
  • The high speed line and conventional line are a single-phase AC feeding system; and power supplies of different phases meet at SS(SubStation)s or SP(Sectioning Post)s. These sections should be negotiated with the main circuit breaker in the traction vehicle switched off, whereby the length of the neutral zone prevents the pantographs shunting adjacent overhead line section. In order for electric railway vehicles to make power running there, there must be a power supply changeover section (approx. for 1km), where a changeover switch changes a power supply to the other power supply of a train running direction sequentially. For a thorough changeover switching control, the precise train position detection is necessarily required. In this paper, to realize the ground-based train position detection method, configuration scheme of train position detection equipment is suggested by using track circuit and axle counter.

  • PDF

A TRANSFORMER-LESS SINGLE PHASE INVERTER USING A BUCK-BOOST TYPE CHOPPER CIRCUIT FOR PHOTOVOLTAIC POWER SYSTEM

  • Kasa, Nobuyki;Iida, Takahiko
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.978-981
    • /
    • 1998
  • This paper presents a newly developed transformer-less single phase inverter for a photovoltaic (PV) power system. In the proposed system, there is no earth-leakage current at all in the theoretical base, and the main circuit of this system is rather simple and it is expected the higher efficiency will be realized. The system is operated by a digital signal processor (DSP) which makes it more flexible in the control. From the experimental results, it is found that this new inverter supplies the AC power to utility grid line with the power factor of nearly unity.

  • PDF

A study on the characteristics of power factor correction circuits with input active boost converter (입력 능동 부스트 컨버터를 고려한 역률개선회로의 특성분석)

  • Jang, Jun-Young;Lee, Kwan-Yong;Kim, Cherl-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.270-272
    • /
    • 2003
  • Switching power supplies are widely used in many industrial fields. Power factor correction(PFC) circuits have tendency to be applied in new power supply designs. The input active power factor correction(APFC) circuits can be implemented using either the two-stage approach or the single-stage approach. The single-stage PFC circuit has advantage to reduce the number of components by eliminating a need for the PFC switch and control circuit. However, unlike in the two-stage approach, the do voltage on the energy storage capacitor in a single-stage PFC circuit is not well regulated. As a result. in universal line application($90{\sim}265Vac$), the storage capacitor voltage varies with the load and line variation. In this paper, the performance of output voltage regulation and transient response are clarified here. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results of 2 [kW] prototype converter.

  • PDF

PFC Converter design for Uninterruptible Power Supply, including Battery Discharger (배터리 방전기 기능을 포함한 무정전전원장치의 PFC 설계)

  • Byeon, Yong Seop;Lim, Seung Beom;Kwon, Sun Man;Lee, Jun Young;Hong, Soon Chan
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.5-6
    • /
    • 2013
  • This paper proposes the PFC converter design for Uninterruptible Power Supply(UPS), including Battery discharger. Battery discharger supplies power to the inverter, when accidents occur, such as power failure, blackout, overload. To verify the validity of proposed the PFC converter design including battery discharger, simulations are carried out.

  • PDF

A New High Efficiency Half Bridge Converter with Improved ZVS Performance

  • Lee Sung-Sae;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.187-194
    • /
    • 2006
  • A new asymmetrical pulse width modulation (PWM) half bridge converter with improved ZVS performance is proposed. The ZVS operation of the proposed converter can be maintained from no load to full load conditions since the magnetizing current of the transformer contributes to the ZVS operation at light loads without considerable conduction loss of the transformer and switch. Synchronous rectification is employed to reduce the rectification loss. Operational principles, large signal modeling, ZVS analysis and design equations are presented. Experimental results demonstrate that the proposed converter can achieve a large ZVS range and significant improvement in efficiency for a 100W (5V, 20A) prototype converter.

A Study on 3-level Interleaved Charger-Discharger for Uninterruptible Power Supplies (무정전전원장치용 3-레벨 인터리브드 충방전기에 대한 연구)

  • Koo, Tae-Geun;Lee, In-Hwan;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.6
    • /
    • pp.535-542
    • /
    • 2017
  • This paper proposes a simple 3-level interleaved charger-discharger for the uninterruptible power supply (UPS) with various combinations of battery cells. The proposed converter not only improves charging and discharging efficiency, but also reduces the physical volume and the cost. Furthermore, the converter also offers the capability of the neutral point voltage, so that more stable operation can be obtained. In addition, the proposed converter significantly reduces the ripple current of the battery inductor, thereby providing an expected life extension of the battery. Experimental results for a 300kVA UPS prototype verify the validity of the proposed converter. The proposed charger-discharger is suitable for UPSs and energy storage systems (ESSs) with wide input battery voltage ranges.

A Compensator for Lateral Current Reduction Applied to Autonomously Controlled UPSs Connected in Parallel

  • Sato Kazuhide Kazuhide;Kawamura Atsuo
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.312-318
    • /
    • 2005
  • This paper presents a compensator for reduction of the reactive lateral current in multiple autonomously controlled uninterruptible power supplies (UPS) connected in parallel. This compensator acts directly on the control equation for voltage amplitude and it provides an improved current distribution especially in the case of parallel connection of UPSs with different output power ratings. Observations show that the original control equation for output voltage amplitude is efficient for voltage regulation but it causes great variation of voltage levels. A compensator with the same structure is added to counterbalance the variation caused by the original control equation. Simulations show promising results with the employment of the proposed compensator. Our simulations are confirmed by experimental results using three UPSs with different output ratings and voltage limiters ($1\%$) connected in parallel under various conditions.

A Design of Solar Array Regulator for LEO Satellites (저궤도 인공위성용 태양전력 조절기 설계)

  • Park, Heesung;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1432-1439
    • /
    • 2015
  • The solar array regulator supplies the electric power to the battery and the other units of a satellite by controlling the operating point of a solar array. In this paper, the solar array regulator composed with analog circuits is proposed. The solar array regulator has three modes. The first is a maximum power point tracking mode for harvesting the maximum photovoltaic power generation. The second is a power limitation mode which is designed for optimizing the volume and weight of the solar array regulator by preventing the excessive power conversion. The last constant voltage mode is proposed to keep the Li-Ion battery is not over-charge. The small signal model of the solar array regulator which has the reversed input and output variables in comparison with conventional converter is established and the stability is analysed. Finally, the proposed design of the solar array regulator is verified by experiments.

An Analysis of Voltage Multiplier Circuits for Smart Phone RF Wireless Charging (스마트폰 RF 무선충전을 위한 전압 체배기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.29-33
    • /
    • 2021
  • A 5.8-GHz 1W wireless power transmission system was used for charging a smart phone. The voltage of one RF power receiver with antenna was not enough for charging. Several power receivers for charging a smart phone was connected serially. The voltage of several RF power receivers are highly enough for charging a smart phone within 50cm. However, the lack of current from small capacitances of RF-DC converters is not suitable for charging smart phone. It means very long charging time. In this paper, the voltage multiplier circuits for RF-DC converters were analyzed to increase the current and voltage at the same time to reduce the charging time in smartphone RF wireless charging. Through the analysis of multiplier circuits, the 7-stage parallel multiplier circuit with voltage-doubler units are suitable for charging the smartphone, which supplies 5V and 700mA at 3V@5.8GHz.