• Title/Summary/Keyword: power series method

Search Result 843, Processing Time 0.025 seconds

A Series Arc Fault Detection Strategy for Single-Phase Boost PFC Rectifiers

  • Cho, Younghoon;Lim, Jongung;Seo, Hyunuk;Bang, Sun-Bae;Choe, Gyu-Ha
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1664-1672
    • /
    • 2015
  • This paper proposes a series arc fault detection algorithm which incorporates peak voltage and harmonic current detectors for single-phase boost power factor correction (PFC) rectifiers. The series arc fault model is also proposed to analyze the phenomenon of the arc fault and detection algorithm. For arc detection, the virtual dq transformation is utilized to detect the peak input voltage. In addition, multiple combinations of low- and high-pass filters are applied to extract the specific harmonic components which show the characteristics of the series arc fault conditions. The proposed model and the arc detection method are experimentally verified through a boost PFC rectifier prototype operating under the grid-tied condition with an artificial arc generator manufactured under the guidelines for the Underwriters Laboratories (UL) 1699 standard.

Power Consumption Forecasting Scheme for Educational Institutions Based on Analysis of Similar Time Series Data (유사 시계열 데이터 분석에 기반을 둔 교육기관의 전력 사용량 예측 기법)

  • Moon, Jihoon;Park, Jinwoong;Han, Sanghoon;Hwang, Eenjun
    • Journal of KIISE
    • /
    • v.44 no.9
    • /
    • pp.954-965
    • /
    • 2017
  • A stable power supply is very important for the maintenance and operation of the power infrastructure. Accurate power consumption prediction is therefore needed. In particular, a university campus is an institution with one of the highest power consumptions and tends to have a wide variation of electrical load depending on time and environment. For this reason, a model that can accurately predict power consumption is required for the effective operation of the power system. The disadvantage of the existing time series prediction technique is that the prediction performance is greatly degraded because the width of the prediction interval increases as the difference between the learning time and the prediction time increases. In this paper, we first classify power data with similar time series patterns considering the date, day of the week, holiday, and semester. Next, each ARIMA model is constructed based on the classified data set and a daily power consumption forecasting method of the university campus is proposed through the time series cross-validation of the predicted time. In order to evaluate the accuracy of the prediction, we confirmed the validity of the proposed method by applying performance indicators.

Fast computation method for the voltage-current analysis on the rectangular power-ground plane (직사각형의 전력-접지층에 대한 전압전류 특성해석을 위한 빠른 계산방법)

  • Suh, Young-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.140-145
    • /
    • 2005
  • The existing analytical expression for the voltage between the power and ground plane consist of metal-dielectric-metal board is expressed in the two dimensional infinite series. To reduce the computation time, the two dimensional infinite series is converted to the one dimensional infinite series using the summation formula of Fourier series. We applied these equations to the analysis of voltage between the $9‘{\times}4'$ size power-ground plane. The derived one dimensional infinite series shows the more rapid convergency and the more accurate result than the two dimensional infinite series. This equation can be applied to the power-ground plane analysis which needs a lot of the repeating computation.

Calculation of Seasonal Demand Side Management Quantity Using Time Series (시계열 모델을 이용한 계절별 수요관리량 산정)

  • Lee, Jong-Uk;Wi, Young-Min;Lee, Jae-Hee;Joo, Sung-Kwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2202-2205
    • /
    • 2011
  • Demand side management is used to maintain the reliability of power systems and to increase the economic benefits by avoiding power plant construction. This paper presents a systematic method to calculate the quantity of seasonal demand side management using time series. A numerical example is presented to calculate the quantity of demand side management in winter season using time series.

Limit Resolution in the Decoupled UPFC Model for Power Flow (조류계산을 위한 분리된 UPFC 모형에서의 제한값 해결)

  • Kim, Tae-Hyeon;Seo, Jang-Cheol;Im, Jeong-Uk;Mun, Seung-Il;Park, Jong-Geun;Han, Byeon-Mun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.824-831
    • /
    • 1999
  • This paper presents new methods to resolve the important limits in the decoupled UPFC model for power flow, by which conventional power flow program can be performed with addition of two buses per one UPFC. In order to operate UPFC to the desired value, the series voltage and shunt current of UPFC should be computed. So a method of calculating these by simple equations after power flow is derived. However, the calculated magnitude of series voltage and/or shunt current of UPFC may not be allowed because of the UPFC limit \ulcorner to the ratings of inverters. In this case, the active power and the reactive power (or the voltage magnitude) of UPFC buses should be revised to resolve the limit. This paper proposes the Newton Raphson method to resolve these limits. Particularly, when resolving the series voltage magnitude, three strategies are proposed according to the priority of the active power and the reactive power (or the voltage magnitude).

  • PDF

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

A Study of Series Active Power Filter Compensating Unbalanced Source Voltage in 3phase-3wire system (불평형 전원전압을 보상하는 3상3선식 직렬형 능동전력필터에 관한 연구)

  • Oh, Jae-Hoon;Kim, Young-Seok;Han, Yoon-Seok;Won, Chung-Yuen;Chol, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.319-322
    • /
    • 2001
  • In this paper, a 3phase-3wire series active power filter compensating current harmonics and unbalanced source voltages is presented. The system is composed of series active power filter and shunt passive filters that are tuned 5th and 7th harmonics. In this system, series active power filter improves harmonic compensation characteristics of the shunt passive filters and compensates the unbalanced source voltages. In the proposed algorithm, compensation voltage for harmonic reduction is calculated by a performance function, and compensation voltage for the unbalanced source voltage is calculated in based on the synchronous reference frame. Some results obtained from the experimental model using the proposed method are presented to demonstrate and confirm its validity.

  • PDF

Power series solution of circular membrane under uniformly distributed loads: investigation into Hencky transformation

  • Sun, Jun-Yi;Rong, Yang;He, Xiao-Ting;Gao, Xiao-Wei;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.45 no.5
    • /
    • pp.631-641
    • /
    • 2013
  • In this paper, the problem of axisymmetric deformation of the circular membrane fixed at its perimeter under the action of uniformly-distributed loads was resolved by exactly using power series method, and the solution of the problem was presented. An investigation into the so-called Hencky transformation was carried out, based on the solution presented here. The results obtained here indicate that the well-known Hencky solution is, without doubt, correct, but in the published papers the statement about its derivation is incorrect, and the so-called Hencky transformation is invalid and hence may not be extended to use as a general mathematical method.

Design of a Highly Efficient Broadband Class-E Power Amplifier with a Low Q Series Resonance

  • Ninh, Dang-Duy;Nam, Ha-Van;Kim, Hyoungjun;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.143-149
    • /
    • 2016
  • This work presents a method used for designing a broadband class-E power amplifier that combines the two techniques of a nonlinear shunt capacitance and a low quality factor of a series resonator. The nonlinear shunt capacitance theory accurately extracts the value of class-E components. In addition, the quality factor of the series resonator was considered to obtain a wide bandwidth for the power amplifiers. The purpose of using this method was to produce a simple topology and a high efficiency, which are two outstanding features of a class-E power amplifier. The experimental results show that a design was created using from a 130 to 180 MHz frequency with a bandwidth of 32% and a peak measured power added efficiency of 84.8%. This prototype uses an MRF282SR1 MOSFET transistor at a 3-W output power level. Furthermore, a summary of the experimental results compared with other high-efficiency articles is provided to validate the advantages of this method.

Prediction of Wind Power by Chaos and BP Artificial Neural Networks Approach Based on Genetic Algorithm

  • Huang, Dai-Zheng;Gong, Ren-Xi;Gong, Shu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.41-46
    • /
    • 2015
  • It is very important to make accurate forecast of wind power because of its indispensable requirement for power system stable operation. The research is to predict wind power by chaos and BP artificial neural networks (CBPANNs) method based on genetic algorithm, and to evaluate feasibility of the method of predicting wind power. A description of the method is performed. Firstly, a calculation of the largest Lyapunov exponent of the time series of wind power and a judgment of whether wind power has chaotic behavior are made. Secondly, phase space of the time series is reconstructed. Finally, the prediction model is constructed based on the best embedding dimension and best delay time to approximate the uncertain function by which the wind power is forecasted. And then an optimization of the weights and thresholds of the model is conducted by genetic algorithm (GA). And a simulation of the method and an evaluation of its effectiveness are performed. The results show that the proposed method has more accuracy than that of BP artificial neural networks (BP-ANNs).