• Title/Summary/Keyword: power plant modeling

검색결과 375건 처리시간 0.024초

A framework of examining the factors affecting public acceptance of nuclear power plant: Case study in Saudi Arabia

  • Salman M. Alzahrani;Anas M. Alwafi;Salman M. Alshehri
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.908-918
    • /
    • 2023
  • The Saudi National Atomic Energy project aims to adopt peaceful nuclear technologies and be part of the country's energy mix. As emerging nuclear energy, it is essential to understand public concerns and acceptability of nuclear energy, as well as the factors influencing acceptance to develop nuclear energy policy and implement nuclear energy programs. The purpose of this study is to analyze the public attitudes and acceptance of nuclear energy among Saudi Arabian citizens by utilizing protection motivation theory and theory of planned behavior. A total of 1,404 participants answered a questionnaire which was distribute by convenience sampling approach. A Structural Equation Modeling framework was constructed and analyzed to understand public behavior toward building the country's first Nuclear Power Plant (NPP). Before analyzing the data, the model was validated. The research concluded that the benefits of nuclear power plants were essential in determining people's acceptance of NPPs. Surprisingly, the effect of the perceived benefits was found higher than the effect of the perceived risks to the acceptance. Furthermore, the public's participation in this study revealed that the NPPs location has a significant impact on their acceptance. Based on the finding, several policy implementations were suggested. Finally, the study's model results would benefit scholars, government agencies, and the business sector in Saudi Arabia and worldwide.

가로림만 조력발전소 가동에 따른 조석체계 변화 예측 (Prediction of Tidal Regime According To Garolim Tidal Power Plant operation)

  • 강석구;이광수;박진순;염기대
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.639-643
    • /
    • 2007
  • Tidal regime change with general hydrolic condition change is examined, according to Garolim Tidal Power Plant (TPP) operation. Numerical model has been developed for the Yellow and East China Seas region, in order to consider the tidal regime change by the TPP operation. The changes of tidal elevation and tidal current inside the Garolim bay are also investigated in details, along with examining the change of the tidal flat area with operation. The field measurement for the tide and current have been carried out for the validation of the numerical model and for understanding the state of current system in the present state.

  • PDF

가로림만 조력발전소 가동에 따른 조석체계 변화 예측 (Prediction of Tidal Regime According To Garolim Tidal Power Plant operation)

  • 강석구;이광수;박진순;염기대;정경태;장찬주
    • 신재생에너지
    • /
    • 제3권2호
    • /
    • pp.3-10
    • /
    • 2007
  • Tidal regime change with general hydrolic condition change is examined, according to Garolim Tidal Power Plant (TPP) operation. Numerical model has been developed for the Yellow and East China Seas region, in order to consider the tidal regime change by the TPP operation. The changes of tidal elevation and tidal current inside the Garolim bay are also investigated in details, along with examining the change of the tidal flat area with operation. The field measurement for the tide and current have been carried out for the validation of the numerical model and for understanding the state of current system in the present state.

  • PDF

다변수 최적화 기법을 이용한 자동차용 고분자전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.541-544
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane (PEM) fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cel1 system, multi-variable optimization code was adopted. Using this method the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study tan be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

군집화 알고리즘 및 모듈라 네트워크를 이용한 태양광 발전 시스템 모델링 (Modeling of Photovoltaic Power Systems using Clustering Algorithm and Modular Networks)

  • 이창성;지평식
    • 전기학회논문지P
    • /
    • 제65권2호
    • /
    • pp.108-113
    • /
    • 2016
  • The real-world problems usually show nonlinear and multi-variate characteristics, so it is difficult to establish concrete mathematical models for them. Thus, it is common to practice data-driven modeling techniques in these cases. Among them, most widely adopted techniques are regression model and intelligent model such as neural networks. Regression model has drawback showing lower performance when much non-linearity exists between input and output data. Intelligent model has been shown its superiority to the linear model due to ability capable of effectively estimate desired output in cases of both linear and nonlinear problem. This paper proposes modeling method of daily photovoltaic power systems using ELM(Extreme Learning Machine) based modular networks. The proposed method uses sub-model by fuzzy clustering rather than using a single model. Each sub-model is implemented by ELM. To show the effectiveness of the proposed method, we performed various experiments by dataset acquired during 2014 in real-plant.

다변수 최적화 기법을 이용한 자동차용 고분자 전해질형 연료전지 시스템 모델링에 관한 연구 (A Study of Modeling PEM Fuel Cell System Using Multi-Variable Optimization Technique for Automotive Applications)

  • 김한상;민경덕;전순일;김수환;임태원;박진호
    • 신재생에너지
    • /
    • 제1권4호
    • /
    • pp.43-48
    • /
    • 2005
  • This study presents the integrated modeling approach to simulate the proton exchange membrane [PEM] fuel cell system for vehicle application. The fuel cell system consisting of stack and balance of plant (BOP) was simulated with MATLAB/Simulink environment to estimate the maximum system power and investigate the effect of BOP component sizing on system performance and efficiency. The PEM fuel cell stack model was established by using a semi-empirical modeling. To maximize the net efficiency of fuel cell system, multi-variable optimization code was adopted. Using this method, the optimized operating values were obtained according to various system net power levels. The fuel cell model established was co-linked to AVL CRUISE, a vehicle simulation package. Through the vehicle simulation software, the fuel economy of fuel cell powered electric vehicle for two types of driving cycles was presented and compared. It is expected that this study can be effectively employed in the basic BOP component sizing and in establishing system operation map with respect to net power level of fuel cell system.

  • PDF

Mathematical Verification of a Nuclear Power Plant Protection System Function with Combined CPN and PVS

  • Koo, Seo-Ryong;Son, Han-Seong;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.157-171
    • /
    • 1999
  • In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP Software Verification and Validation.

  • PDF

성능기반 화재모델(FDS)을 이용한 원전 방화지역 화재위험 분석조건에 대한 민감도 해석 (Sensitivity Analysis for Fire Risk Conditions of Fire Area at Nuclear Power Plant with Performance-based Fire Model (FDS))

  • 지문학;이병곤;정래혁
    • 한국화재소방학회논문지
    • /
    • 제21권2호
    • /
    • pp.98-104
    • /
    • 2007
  • 본 연구는 원자력발전소의 방화지역에 대한 화재위험을 전산유체역학모델인 FDS를 이용하여 평가한 내용이다. 원자로 안전정지를 유지하기 위한 스위치기어실이 화재지역으로 선정되었으며, 화재 시나리오는 가상 화재조건을 기준으로 구성되었다. 본 연구의 주요 목적은 화재 모델링의 주요 입력항목인 열 발생율과 분석 모델 격자 크기를 변경한 경우 프로그램에 의하여 나타나는 결과값의 민감도를 분석하는 것이다. 그 결과는 전산유체역학모델에서 개선이 필요한 항목과 함께 결론에 제시되었다.

등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교 (Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling)

  • 이진희;송종걸
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.