• Title/Summary/Keyword: power plant boiler

Search Result 346, Processing Time 0.022 seconds

Expert Knowledge-Based Fuzzy Auto-Tuning of PI Controllers for a Drum-Type Boiler of Fossil Power plant (전문가 지식을 이용한 화력 발전소 드럼형 보일러 PI 제어기의 퍼지 자동 동조에 관한 연구)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.941-954
    • /
    • 1991
  • The characteristics of a power plant changes as it operates for a long time and/or for different operating point. As a result, operators must retune gains of the controllers for better performance. In fact, skilled operators can retune the gains in reference to recorded data obtained by a test called dynamic test. The dynamic test, however, requires much time, and can be heavy burden for operators. In this paper, an expert knowledge-based auto-tuner is designed for drum-type boiler controllers of a fossil power plant using fuzzy logic. The performance of the proposed auto-tuner is shown via computer simulation and the simulation results show that the proposed auto-tuner is satisfactory for the desired performance.

  • PDF

Prediction of Internal Tube Bundle Failure in High Pressure Feedwater Heater for a Power Generation Boiler by the Operating Record Monitoring (운전기록 모니터링에 의한 발전보일러용 고압 급수가열기 내부 튜브의 파손예측)

  • Kim, Kyeong-seob;Yoo, Hoseon
    • Plant Journal
    • /
    • v.15 no.2
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, the failure analysis of the internal tube occurred in the high pressure feedwater heater for power generation boiler of 500 MW supercritical pressure coal fired power plant was investigated. I suggested a prediction model that can diagnose internal tube failure by changing the position of level control valve on the shell side and the suction flow rate of the boiler feedwater pump. The suggested prediction model is demonstrated through additional cases of feedwater system unbalance. The simultaneous comparison of the shell side level control valve position and the suction flow rate of the boiler feedwater pump compared to the normal operating state value, even in the case of the high pressure feedwater heater for the power boiler, It can be a powerful prediction diagnosis.

Removal of iron oxide scale from boiler feed-water in thermal power plant by high gradient magnetic separation: field experiment

  • Akiyama, Yoko;Li, Suqin;Akiyama, Koshiro;Mori, Tatsuya;Okada, Hidehiko;Hirota, Noriyuki;Yamaji, Tsuyoshi;Matsuura, Hideki;Namba, Seitoku;Sekine, Tomokazu;Mishima, Fumihito;Nishijima, Shigehiro
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.14-19
    • /
    • 2021
  • The reduction of carbon dioxide emissions becomes a global issue, the main source of carbon dioxide emissions in the Asian region is the energy conversion sector, especially coal-fired power plants. We are working to develop technologies that will at least limit the increase in carbon dioxide emissions from the thermal power plants as one way to reduce carbon dioxide emissions. Our research aims to reduce carbon dioxide emissions by removing iron oxide scale from the feedwater system of thermal power plants using a superconducting high-gradient magnetic separation (HGMS) system, thereby reducing the loss of power generation efficiency. In this paper, the background of thermal power plants in Asia is outlined, followed by a case study of the introduction of a chemical cleaning line at an actual thermal power plant in Japan, and the possibility of introducing it into the thermal power plants in China based on the results.

An Advanced Instrumentation Signal Analyzing Technique for Automated Power Plant Monitoring and Fault Diagnosis (발전소 운전감시 및 고장진단을 위한 계측기기 신호의 전처리 기법에 관한 연구)

  • Chang, Tae-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.450-453
    • /
    • 1996
  • This research presents a new method of detecting and diagnosing faults of a power plant. Detection of characteristic wave patterns from multichannel instrumentation signals forms the basis of the proposed approach. The dynamics of 500MW drum-type boiler (Boryung coal-fired plant unit #1 and #2) and its control systems are modeled and simulated to generate diverse operation patterns and fault situations and to utilize them for the development of the fault detection algorithms. The results of the boiler system modeling and simulations show a fairly high agreement when compared with some of the actual plant performance test data.

  • PDF

A Case Study on The Reduction and Examination for Noise and Vibration of Backpass Heat Surface in the Power Plant Boiler (발전용 보일러의 후부 전열면 소음진동 저감에 관한 사례 연구)

  • Lee, Gyoung-Soon;Lee, Tae-Hoon;Moon, Seung-Jae;Lee, Jae-Heon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.642-647
    • /
    • 2008
  • The boiler structure is determined by combustion characteristics and construction costs in the combustion chamber of a large commercial boiler. The heat transfer in boiler is composed of the radiation and the convection. The convective heat transfer has happened to back-pass heating surface. The combustion gas sequentially passes through the reheater tube, 1st economizer tube, and 2nd economizer tube. In case of being lowered in boiler height, we have to install additional tube bundle in back-pass heating surface for increasing the heat transfer of boiler, which causes the noise and vibration from combustion gas. When the combustion gas passes through the back-pass tube bundle in specified load of commercial boiler, this paper analyzes the acoustic characteristics between vortex-shedding frequency and natural frequency in tube bundle cavity. The case study reduce the resonance by changing natural frequency characteristics of tube-bundle cavity using a way to install ant-noise baffle in the direction of combustion gas flow.

  • PDF

A techno-economic analysis of partial repowering of a 210 MW coal fired power plant

  • Samanta, Samiran;Ghosh, Sudip
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.167-179
    • /
    • 2015
  • This paper presents a techno-economic analysis of a partial repowering scheme for an existing 210 MW coal fired power plant by integrating a gas turbine and by employing waste heat recovery. In this repowering scheme, one of the four operating coal mills is taken out and a new natural gas fired gas turbine (GT) block is considered to be integrated, whose exhaust is fed to the furnace of the existing boiler. Feedwater heating is proposed through the utilization of waste heat of the boiler exhaust gas. From the thermodynamic analysis it is seen that the proposed repowering scheme helps to increase the plant capacity by about 28% and the overall efficiency by 27%. It also results in 21% reduction in the plant heat rate and 29% reduction in the specific $CO_2$ emissions. The economic analysis reveals that the partial repowering scheme is cost effective resulting in a reduction of the unit cost of electricity (UCOE) by 8.4%. The economic analysis further shows that the UCOE of the repowered plant is lower than that of a new green-field power plant of similar capacity.

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.

Development of a algorithm for thermal stress analysis of turbine rotor (터빈 로터 열응력 해석 알고리즘 개발)

  • Chang, S.H.;Baek, S.K.;Chung, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2284-2289
    • /
    • 1998
  • The Rotor Stress Indicator is an integrated system of hardware and program components which has been designed to read an assortment of turbine temperature and speed input devices, perform an analysis of the temperature induced stresses and output pertinent temperature and stress information to guide the turbine operator during turbine prewarming, start-ups, load changes, and shut-downs. The purpose of the RSI is to provide guidance to the plant operator during startup, shutdown, loading, and unloading of the turbine. Since the stresses are a function of the temperature changes to which the turbine is exposed, the RSI also provides guidance for operation of the boiler main steam and reheat steam temperatures as they affect the rotor stresses. This may permit more efficient overall boiler turbine start-ups. In this paper, new rotor stress analysis algorithm for RSI is introduced and compared with present system which has been used in thermal power plant.

  • PDF

Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant (미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가)

  • Mun, Tae-Young;Tefera, Zelalem Tumsa;Lee, Uendo;Lee, Jeung Woo;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

The design method of overheat protection orifice for power plant boiler super heated tube (발전용 보일러 주증기 튜브 과열방지용 오리피스 설계기법)

  • Kim, Bum-Shin;Yoo, Seong-Yeon;Ha, Jung-Su;Kim, Eui-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • It is important that overheat protection of super heated tube in boiler operation and maintenance. The overheat of super heat tube can make damage and rupture of tube material, which causes accidental shutdown of boiler. The super heated tube overheat is almost due to the lack of uniformity of gas temperature distribution. There are two ways to protect overheat of super heated tube. The one is to control hot gas operation pattern which is temperature or flow distribution. the other is to control super heated steam flow distribution. The former is difficult than the later, because of control device design. In this paper steam flow control method which uses orifices is proposed to protect overheat of super heat tube.

  • PDF