• Title/Summary/Keyword: power of test

Search Result 10,095, Processing Time 0.044 seconds

Establishment of Replacement Criteria for Stud Bolts using on High Temperature in the Power Plants (발전설비 고온부에서 사용되는 스터드 볼트의 교체기준 설명)

  • 정남용;김문영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.279-286
    • /
    • 2000
  • The stud bolts tend to degrade faster by high temperature(over 45$0^{\circ}C$). Therefore, replacement cycle inspection of stud bolts were carried out various method such as ultrasonic test(UT), magnetic test(MT), wobble test, visual test and hardness test. Especially, wobble test method has been applied to determine replacement evaluation criteria of stud bolt after long time operation. We applied three different methods on the three site and the obtained data are compared with the results from the evaluation methods. From the results, the replacement criteria for stud bolts under high temperature in power plants are proposed.

  • PDF

A Study on the Small Punch Test Behaviors of Gas Turbine Blades Material Inconel 738LC (가스터빈 블레이드 재질 Inconel 738LC의 소형펀치시험 거동에 관한 연구)

  • Jang, S.H.;Yoo, K.B.;Choi, G.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • The small punch test have been developed to evaluate the material strength of the power plant components. This small punch test specimen is very small than the conventional strength test specimens. Korea Electric Power Research Institute (KEPRI) have been applying this test to assess accurately the life of thermal power plant and enhancing the reliability. The small punch test for gas turbine blades is under development. It's possible to compare the relative strength among the same materials having different operation histories. In this paper, the strength reductions of gas turbine materials are investigated by the small punch tests. All materials shows the almost same strength and deformation with the allowable deviation. At the same test temperature, the damaged material has the maximum load value. The strength reduction is not shown in this small punch test results.

  • PDF

The Analysis of High Frequency Signal for 7tonf-class Power Pack System of KSLV-II (한국형발사체 7톤 파워팩 시스템 고주파 신호 분석)

  • So, Younseok;Yi, Seungjae;Lee, Kwangjin;Kim, Seunghan;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.96-102
    • /
    • 2016
  • The 7tonf-class power pack test at turbopump test facility in Naro space center was performed for confirmations of starting/running/ending operation characteristics before 7tonf rocket engine hot-firing test. The dynamic pressure mounted on a combustion chamber of gas generator is measured under 0.2 bar which does not conditioned to the unstable combustion. The analysis results of RPM and acceleration sensors mounted on the turbopump, the power pack test was performed to the estimated RPM with the stable combustion.

Reliability Verification of Battery Disconnecting Unit (BDU 신뢰성 검증)

  • Yoon, Hye-Lim;Ryu, Haeng-Soo;Ji-Hong;Hong-Tae, Park
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.866-867
    • /
    • 2011
  • As part of the green growth, The Green Car has attracted wide attention. Types of the Green Car are Electric Vehicle, Plug-in Hybrid Electric Vehicle, Hybrid Electric Vehicle, Fuel Cell Vehicle and Clean Diesel Vehicle. Of these, The electric vehicle is equipped with the BDU(Battery Disconnecting Unit). BDU is supplying stable battery power and blocking it to protect electrical system of the electric vehicle. The BDU consists of electric components such as current sensor, fuse and pre-charge resistor. These must pass Voltage withstand test, Salt mist test, Thermal shock test, Vibration test and Short-circuit test commonly to verify reliability of the electric components. In addition, The current sensor should be verified whether normal operation. The breaking capacity of fuse should be verified. The durability of pre-charge resistor should be verified by supplying battery power and blocking it repeatedly. The reliability of BDU as well as the electric vehicle is secured by verifying the reliability of electric components. In addition, It will contribute to the acceleration and promotion of Green Car Technology.

  • PDF

HALT of High Power Amplifier Module Used in Radar (레이더용 고출력 증폭기 모듈의 HALT)

  • Hwang, Soon-Mi;Kim, Chul-Hee;Lee, Kwan-Hun
    • Journal of Applied Reliability
    • /
    • v.14 no.2
    • /
    • pp.97-102
    • /
    • 2014
  • Radar is an object-detection system that uses radio waves to determine the range, altitude, direction, or speed of objects. High power amplifier Module is the most critical part of the high-power radar transmitter systems. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. Research related to radar has been conducted in various fields according to improvement of the communication technology. But only performance-originated technology development has been dashed; study concerning environment duality and safety concerning reliability are still insufficient. In general, radar module is exposed to the outside, on the means of moving or fixed in a certain place. It should be guaranteed sufficient immunity for a variety of environmental stresses that can occur in the outdoor. HALT is a great process used for quickly finding failure mechanisms in a hardware design and product. By applying various kinds and extreme level of stresses, we can find the operating limits of products. In thesis, we conducted HALT test of the high power amplifier modules which used in military and automotive radar. After the test, we analyzed environmental weaknesses of high power amplifier modules using conventional construction data.

An Accelerated Degradation Test of Nuclear Power Plants Communication Cable Jacket (원자력 발전소용 통신케이블 자켓의 가속열화시험)

  • Jung, Jae Han;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.969-980
    • /
    • 2017
  • Purpose: The purpose of this study was to estimate the lifetime, and verify the target lifetime at steady state temperature, of communication cable jackets used in nuclear power plants. Method: This study was completed according to test and analysis methods required by international standards. After measuring the residual elongation(%) of specimens at specific points in time with the accelerated degradation test, average failure time of each temperature was computed. Thus, the activation energy could be derived by applying the temperature-Arrhenius law to estimate cable jacket lifetime at steady state temperature. Results: The cable jacket lifetime was estimated as 363.8 years assuming a normal nuclear power plant operating temperature of $90^{\circ}C$. Conclusion: To ascertain stable operating conditions for a nuclear power plant, accelerated degradation tests were performed according to the Arrhenius law for components of the nuclear power plants. The lifetime was estimated from the degradation data collected during the accelerated degradation test.

A Study on the Protective Function Performance Evaluation of Grid-Connected Power Conditioning System for Residential Fuel Cell System (가정용 연료전지시스템 계통연계형 전력변환장치의 보호기능 성능평가에 관한 연구)

  • Lee, Jung-Woon;Seo, Won-Seok;Kim, Young-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.341-344
    • /
    • 2009
  • In this paper, protective function evaluation was conducted to determine the performance and safety of a power conditioning system(PCS) for 1kW residential fuel cell system. It is essential to have a power quality, grid-connection and safety of PCS. Even though it is under 500ms by KGS-A410 standard, it is shown a rapid response time of 25ms from input under-voltage test. In terms of output over/under-voltage test, it is shown 29.15 and 79.4ms. Especially using anti-islanding test, it is shown all times under 100ms for combination cases of real and reactive power. We confirmed a rapid response characteristics and safety of PCS. The results of this evaluation are being used to develop a new test protocols of PCS.

  • PDF

The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant (석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.

A simulation test of lone rejection for steam turbine generator in nuclear power plant (원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Tae-Woon;Lee, Ki-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2301-2303
    • /
    • 2003
  • A steam turnine in thermal/nuclear power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy. After synchronization in parallel with the power system, generator output increases according as the governor, that is the controller, increases steam flow into turbine. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip setpoint by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a simulation test of generator load rejection to be implemented on the turbine governor in a 600MW nuclear power plant before its startup.

  • PDF

The Development of Boiler Fuel Control Algorithm and Distributed Control System for Coal-Fired Power Plant (석탄화력발전소 보일러 연료제어 알고리즘과 분산제어시스템의 개발)

  • Lim, Gun-Pyo;Lee, Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • This paper is written for the development and application of boiler fuel control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. Fuel control algorithm has the upper algorithm and it is boiler master control algorithm that controls the fuel, feed water, air by generation output demand. Generation output demand by power load influences fuel control. Because fuel can not be supplied fast to the furnace of boiler, fuel control algorithm was designed adequately to control the steam temperature and to prevent the explosion of boiler. This control algorithms were coded to the control programs of distributed control systems which were developed domestically for the first time. Simulator for coal-fired power plant was used in the test step. After all of distributed control systems were connected to the simulator, the tests of the actual power plant were performed successfully. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.