• Title/Summary/Keyword: power loss analysis

Search Result 1,514, Processing Time 0.03 seconds

Finite element analysis of the effects of different archwire forms and power arm positions on maxillary incisors in en masse retraction using fixed lingual orthodontic appliances

  • Hilal Tarkan;Ihsan Sami Guvenc
    • The korean journal of orthodontics
    • /
    • v.54 no.5
    • /
    • pp.265-273
    • /
    • 2024
  • Objective: This study aimed to investigate the effects of archwire form and power arm positions on maxillary incisors during lingual en masse retraction supported by miniscrew implants, using the finite element analysis method. Methods: Sliding mechanics for lingual en masse retraction were simulated using the finite element method. Power arms were placed mesial and distal to the maxillary canine with straight and mushroom-shaped archwires. Miniscrews provided absolute anchorage for retraction force. Results: When power arms were positioned mesial to the canine teeth, an increase in the intercanine distance was observed, while a decrease was noted when the power arms were distal to the canine tooth. Lateral incisors exhibited a greater torque loss, particularly when the power arm was mesial to the canine tooth. In the central incisors, the mushroom archwire resulted in intrusion, while the straight archwire showed an extrusion tendency. Movements in groups using the straight archwire were less controlled compared to those in groups using the mushroom archwire. Conclusions: The archwire form and the position of the power arm affected the torque loss and vertical position of incisors during lingual en masse retraction supported by miniscrew implants. The most controlled movement was achieved with the combination of a power arm positioned distal to the canine tooth and a mushroom archform.

Core loss Analysis of Permanent Magnet Generator Considering the operating Speed for Wind Power Application (회전속도를 고려한 영구자석형 풍력발전기의 철손 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Choi, Jang-Young;Lee, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.115-117
    • /
    • 2007
  • Core loss form a larger proportion of the total losses. This paper deals with the analysis on the core loss in PM generator considering the operating speed for wind power application. Using the data information from a manufacturer and nonlinear curve fitting, this paper investigates the magnetic behavior and its core losses in the stator core using the electrical steels.

  • PDF

Analysis of Regional MLF Characteristics on 12 Load Cases (부하시점에 따른 지역별 한계손실계수 변동특성 분석)

  • NamKung, J.Y.;Moon, Y.H.;Oh, T.K.;Rim, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.333-335
    • /
    • 2001
  • The transmission networks are not perfect conductors and a percentage of the power generated is therefore lost before it reaches the loads. This network loss contributes to the cost of suppling power to consumers, and must be considered if the most efficient dispatch and location of generators and loads are to be achieved. In this paper, marginal loss factors are calculated for 12 load cases that represent the impact of marginal network losses on nodal prices at the transmission network connection points. Based on comparison analysis of marginal loss factors for 12 loaf cases, we can find the regional MLF characteristics in KOREA.

  • PDF

Optimal Efficiency Operation of 2-Stage Boost Converter With Weighted Efficiency (가중효율을 적용한 2-Stage Boost 컨버터 최적효율 운전 연구)

  • Kim, Seung-Min;Kim, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.285-293
    • /
    • 2021
  • An optimal operation method based on weighted efficiency for a two-stage boost converter is proposed in this study. Detailed loss analysis of the converter is performed to derive the optimal operation method according to the load and input voltage fluctuations, and the optimal DC-bus voltage is derived by applying the weighted efficiency method. The proposed method can satisfy optimal efficiency in the main operation region without a complicated control method. Using 1kW typical two-stage boost converter and is verified three types of weighted efficiency formulas and loss analysis are utilized to derive high-efficiency optimal DC-bus voltage from each load range.

A Study on the Efficiency Characteristics of the Interleaved CRM PFC using GaN FET (GaN FET를 적용한 인터리브 CRM PFC의 효율특성에 관한 연구)

  • Ahn, Tae-Young;Jang, Jin-Haeng;Gil, Yong-Man
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • This paper presents the efficiency analysis of a critical current mode interleaved PFC rectifier, in which each of three different semiconductor switches is employed as the active switch. The Si FET, SiC FET, and GaN FET are consecutively used with the prototype PFC rectifier, and the efficiency of the PFC rectifier with each different semiconductor switch is analyzed. An equivalent circuit model of the PFC rectifier, which incorporates all the internal losses of the PFC rectifier, is developed. The rms values of the current waveforms main circuit components are calculated. By adapting the rms current waveforms to the equivalent model, all the losses are broken down and individually analyzed to assess the conduction loss, switching loss, and magnetic loss in the PFC rectifier. This study revealed that the GaN FET offers the highest overall efficiency with the least loss among the three switching devices. The GaN FET yields 96% efficiency at 90 V input and 97.6% efficiency at 240 V, under full load condition. This paper also confirmed that the efficiency of the three switching devices largely depends on the turn-on resistance and parasitic capacitance of the respective switching devices.

Pressure Loss Analysis of the 75 kW MCFC Stack with Internal Manifold Separator (75 kW 용융탄산염 연료전지 (MCFC) 스택 내 압력 손실 해석)

  • Kim, Beom-Joo;Lee, Jung-Hyun;Kim, Do-Hyeong;Kang, Seung-Won;Lim, Hee-Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.5
    • /
    • pp.367-376
    • /
    • 2008
  • To obtain the data of the pressure loss and differential pressure at the inside of the stack that was composed of 126 cells with 7,500 cm2 electrode area, 75kW molten carbonate fuel cell system has been operated. Computational fluid dynamics was applied to estimate reactions and thermal fluid behavior inside of the stack that was adopted with internal manifold type separator. The pressure loss coefficient K showed 72.29 to 84.01 in anode and 6.34 to 8.75 in cathode at low part of cells at the inside of 75 kW MCFC stack respectively. Meanwhile, the pressure loss coefficient of the higher part of cells at the interior of the stack showed 15.36 and 56.44 in anode and cathode respectively. These results mean that there is no big total pressure difference between anode and cathode at the inner part of 75 kW MCFC stack. This result will be reflected in 250kW MCFC system design.

Calculation of Coupling Loss Factor for Small reverberation cabin using Statistical Energy Analysis (통계적 에너지 해석법을 이용한 소형 잔향실의 연성손실계수 측정)

  • 김관주;김운경;윤태중;김정태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.797-801
    • /
    • 2003
  • The Statistical Energy Analysis is based on the power flow and the energy conservation between sub-systems, which enable the prediction of acoustic and structural vibration behavior in mid-high frequency ranges. This paper discusses the identification of SEA coupling loss factor parameters from experimental measurements of small reverberation chamber sound pressure levels and structural accelerations. As structural subsystems, steel plates with and without damping treatment are considered. Calculated CLFs were verified by both transmission loss values for air-borne CLF case and running SEA commercial software As a result, CLFs have shown a good agreement with those computed by software. Acoustical behavior of air-borne noise and structure-borne noise has been examined. which shows reasonable results, too.

  • PDF

Analysis of Heat Loss Effect of Combustion in Closed Vessel (정적 연소실에서의 열 손실 해석 모델)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.1
    • /
    • pp.14-19
    • /
    • 2001
  • Interests and importance of down-scale combustor is increasing with the emerging need for miniaturized power source which is now a bottleneck of micro system development. But in down scaled combustor increased heat loss compared to thermal energy generation inhibits the usability and application of the device, so as a preliminary work of down scaled combustor fabrication. Modeling tool for the device should be established, in this study modeling approach of closed vessel combustion phenomena that can express heat loss effect and resulting quenching is proposed and the result is compared with experiment data. From this model heat loss effect following combustor scale down can be further understood, and further more design parameter and analysis tool can be obtained.

  • PDF

The Analysis of Conduction and Switching Losses in Multi-Level Inverter System (멀티레벨 인버터 시스템의 전도손실과 스위칭손실 해석)

  • 金 兌 珍;姜 岱 旭;;玄 東 石
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • The multi-level inverter system is very promising in ac drives, when both reduced harmonic contents and high power are required. In case of multi-level inverter system, the loss of switch devices cannot be analyzed by conventional methods. The reason is that the loss of each the switch device is different from one another unlike 2-level. In this paper, a simple and accurate method of computing conduction and switching loss is proposed for multi-level inverter system. The validity of the proposed method is proven for 3-level and 4-revel diode clamped inverter system.

High-efficiency Operation of Switched Reluctance Generator based on Current Waveform Control

  • Li, Zhenguo;Yu, Siyang;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • The main aim of this paper is to expound high-efficiency operation of Switched Reluctance Generator (SRG) based on the current waveform. For this purpose, theoretical analysis of the copper loss and iron loss of the system is done first. Then, necessary simulation is done to find the variation trend of the copper loss and iron loss with the variation of the current waveform at the same output power. Finally, the best current waveform which can make the system operate with high efficiency is obtained by considering the influence of these two kinds of loss. In order to verity the simulation results, the experimental platform of DC motor-SRG is built and the modified angle position control (APC) method which can specify the current shape optionally is presented. By comparing the system efficiency at the three kinds of typical current waveform, the correctness and feasibility of the theory is verified. The proposed method is simple, reliable, and easy to achieve.