• Title/Summary/Keyword: power law friction factor equation

Search Result 8, Processing Time 0.022 seconds

Simple Design of Commericial Pipe Flow (단일 상용관로의 간편설계)

  • Yu, Dong-Hun;Gang, Chan-Su
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.565-574
    • /
    • 1998
  • The friction factor distribution of commercial pipes vary according to the pipe type and size. The present paper developed the friction factor equations of power law by analyzing the data reported by Colebrook(1938). Generally, pipe design requires pump power, discharge or pipe diameter for each condition given. Yoo(1995b) has suggested the basic equations for the explicit design of uniformly rough pipe and Yoo and Kang(1996) have refined those equations for the cases of uniformly rough pipe on a sloping bed with a pumping power. Furthermore Yoo and Kang(1997) have studied the design of commercial pipe for a general case. The approach gives relatively accurate solutions, but the equations obtained are rather complicated. In the present study two types of power law are developed for the friction factor of commercial pipe, and explicit forms of equations are generated by applying the power law friction factor equations for the simple design of commercial pipes.

  • PDF

Simple Design of Seepage Flow (침투류 간편설계)

  • Yu, Dong-Hun;Eom, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.1
    • /
    • pp.31-40
    • /
    • 1999
  • After investigating the basic problems of seepage flow, the friction factor equation of power form was developed for solving them. The use of power law for the estimation on friction factor enabled to develop the explicit form of equations without any iteration process being related to various non-dimensional physical numbers. For the derivation of friction factor equations, the existing data were re-analyzed, and the simple method of seepage flow design was devised with the power law equations for the estimation of slope, discharge, and diameter.

  • PDF

Application of Surface Runoff-River flow Model to Small- and Large-Size Catchment Areas (소유역 및 대유역 홍수유출모형의 적용)

  • Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.87-104
    • /
    • 2003
  • A numerical model of surface runoff and river flow has been applied to small- and large-size catchment areas in order to investigate the physical characteristics of river flow during flood period. Several refinements are made on the existing model SIRG-RS for the ways of rainfall input through surface runoff, river junction treatment and the computation of river flow on steep slope. For the computation of frictional forces, employed is the power law of friction factor which is a function of Reynolds number and relative roughness height. The empirical equation of friction factor is developed using recent field data as well as laboratory data. The refined model has been applied to small-size catchment area as well as large-size catchment area, and the computation results are found in good agreement with the observations in both cases.

Simplified Design of Commercial Pipes with Considering Secondary Losses (부차 손실을 고려한 상용관로의 간편 설계)

  • Yu, Dong-Hun;Jeong, Won-Guk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.31-43
    • /
    • 2001
  • The friction factor of commercial pipe varies with wide range depending on pipe type and pipe size. Various methods can describe the wide variation of friction factor with good accuracy, but they normally require an iteration process even for solution of a simple case. Power law can result in an explicit form of solver so that the power law is rigorously employed for the development of direct solution technique. The parameters used in the present form of power law are allowed to haute some variation with pipe size and Reynolds number as well as pipe type for wider coverage with good accuracy, while Hazen-Williams equation permits limited variation which accounts only for the roughness or the pipe type. Furthermore secondary loss is considered in the development of explicit equations for design of commercial pipes.

  • PDF

Characteristics of the Interfacial Friction Factor in Countercurrent Two-Phase Flows (반류 2상유동에서의 계면마찰계수의 특성)

  • 이상천;김동수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.299-307
    • /
    • 1991
  • A unified correlation of the interfacial friction factor for air-water and steam-water flows in inclined rectangular channels has been developed. The correlation was expressed in the form of a power law of the liquid and the gas Reynolds number, and the liquid-to-gas viscosity ratio. In addition, a relation between the equivalent roughness and the intensity of wave height fluctuation of the interface has been investigated. A new dimensionless intensity of fluctuation including a liquid film Reynolds number is proposed. It has been shown that the dimensionless equivalent roughness, which is calculated from the Nikuradse equation, can be uniquely related to this dimensionless intensity of fluctuation for both air-water and steam-water flows.

Explicit Equations of Normal Depth for Drainage Pipes (하수관 등류수심 양해법 산정식)

  • Yoo, Dong-Hoon;Rho, Jung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.527-535
    • /
    • 2005
  • The computation of normal depth is very important for the design of channel and the analysis of water flow. Drainage pipe generally has the shape of curvature like circular or U-type, which is different from artificial triangular or rectangular channel. In this case, the computation of normal depth or the derivation of equations is very difficult because the change of hydraulic radius and area versus depth is not simple. If the ratio of the area to the diameter, or the hydraulic radius to the diameter of pipe is expressed as the water depth to the diameter of pipe by power law, however, the process of computing normal depth becomes relatively simple, and explicit equations can be obtained. In the present study, developed are the explicit normal depth equations for circular and U-type pipes, and the normal depth equation associated with Hagen (Manning) equation and friction factor equation of smooth turbulent flow by power law is also proposed because of its wide usage in engineering design.

Study on the Modeling Technique for Prediction about Pressure Drop of an Intravenous Lung Assist Device (혈관 내 폐 보조장치의 압력손실 예측을 위한 모델링기법에 관한 연구)

  • 김기범;권대규;정경락
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.293-299
    • /
    • 2003
  • In this paper, the correlation of Pressure drop about the Newtonian and non-Newtonian fluid was investigated experimentally for vibrating intravascular lung assist device (VIVLAD) and we determined correlation equation to make a prediction about Pressure drop for designing VIVLAD. Design conditions to predict the pressure drop of the modules were studied through an experimental modeling before inserting the artificial lung assist device into as venous. Experiments were performed by distilled water, glycerol/water mixed solution(40% glycerol) of Newtonian fluids. and the bovine blood of non-Newtonian fluids. These fluids were flowed outside and parallel of hollow fiber membranes. Also we measured pressure drop according to the number of the fiber membranes which ware inserted into the inside diameter of shell of 3 cm, and developed the prediction equations by curve fitting method based on correlation between the experimental pressure drop and the frontal area or the packing density of device. The result showed that the Pressure drop and the friction factor of the water/glycerol mixed solution were similar to that of bovine blood. It was showed that the water/glycerol mixed solution (40% glycerol) could be used for measuring the pressure drop and the friction factor instead of the bovine blood. Also, we could estimate the prediction equation of pressure drop and friction factor as the function of Packing density at the number of hollow fibers. We obtained the reliance of the prediction equations because the pressure drop and the friction factor measured from the experiments were similar to that from the prediction equation. These results may be used to further usefulness for the design of VIVLAD.

Development and Application of Diffusion Wave-based Distributed Runoff Model (확산파에 기초한 분포형 유출모형의 개발 및 적용)

  • Lee, Min-Ho;Yoo, Dong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.553-563
    • /
    • 2011
  • According to the improvement of computer's performance, the development of Geographic Information System (GIS), and the activation of offering information, a distributed model for analyzing runoff has been studied a lot in recently years. The distribution model is a theoretical and physical model computing runoff as making target basin subdivided parted. In the distributed model developed by this study, the volume of runoff at the surface flow is calculated on the basis of the parameter determined by landcover data and a two-dimensional diffusion wave equation. Most of existing runoff models compute velocity and discharge of flow by applying Manning-Strickler's mean velocity equation and Manning's roughness coefficient. Manning's roughness coefficient is not matched with dimension and ambiguous at computation; Nevertheless, it is widely used in because of its convenience for use. In order to improve those problems, this study developed the runoff model by applying not only Manning-Strickler's equation but also Chezy's mean velocity equation. Furthermore, this study introduced a power law of exponential friction factor expressed by the function of roughness height. The distributed model developed in this study is applied to 6 events of fan-shape basin, oblong shape test basin and Anseongcheon basin as real field conditions. As a result the model is found to be excellent in comparison with the exiting runoff models using for practical engineering application.