• 제목/요약/키워드: power increased design

검색결과 956건 처리시간 0.027초

Design of a Cooperative Voltage Control System Between EMS (VMS) and DMS

  • Shin, Jeonghoon;Lee, Jaegul;Nam, Suchul;Song, Jiyoung;Oh, Seungchan
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.279-284
    • /
    • 2020
  • This paper presents the conceptual design of a cooperative control with Energy Management System (EMS) and Distribution Management System (DMS). This control enables insufficient reactive power reserve in a power transmission system to be supplemented by surplus reactive power in a power distribution system on the basis of the amount of the needed reactive power reserve calculated by the EMS. This can be achieved, because increased numbers of microgrids with distributed energy resources will be installed in the distribution system. Furthermore, the DMS with smart control strategy by using surplus reactive power in the distribution system of the area has been gradually installed in the system as well. Therefore, a kind of hierarchical voltage control and cooperative control scheme could be considered for the effective use of energy resources. A quantitative index to evaluate the current reactive power reserve of the transmission system is also required. In the paper, the algorithm for the whole cooperative control system, including Area-Q Indicator (AQI) as the index for the current reactive power reserve of a voltage control area, is devised and presented. Finally, the performance of the proposed system is proven by several simulation studies.

자동차 파워 트레인 샤프트 가공용 8축 복합가공기의 고 강성 구조설계에 관한 연구 (High-Stiffness Structure Design of 8-Axis Multi-tasking Machine for Automotive Powertrain Shafts)

  • 문동주;조준현;최윤서;황인환;이종찬
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.78-83
    • /
    • 2016
  • The development of an exclusive 8-axis multi-tasking machine to finish multiple cutting processes by a single piece of power equipment for securing the high-precision machining and high productivity of the series of shafts (a core part of the automotive powertrain that delivers engine power) is needed. The rigidity of the structure must be improved and the weight of the structure must be reduced to develop a multi-tasking machine with high precision and high productivity. In this paper, we perform a static structural analysis of the initial design of the multi-tasking machines and compare the results of the multi-tasking machines improved by the reinforced design and the results of the initial one. According to the results of the structural analysis, the rigidity of the reinforced machine was increased and the overall weight was decreased. Therefore, the productivity was increased.

태양광 발전시스템의 온도에 따른 전압-전류 특성 (I-V Characteristics According to Temperature for Photovoltaic Systems)

  • 황준원;이영;최용성;이경섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.183-185
    • /
    • 2009
  • In this thesis, output voltage, current and power of solar module were classified by irradiation and module temperature from data of overall operating characteristics collected for one year in order to manage efficient photovoltaic generation system and deliver maximum power. In addition, from these data, correlations between irradiation, module temperature of photovoltaic cell and amount of power given by photovoltaic cell was quantitatively examined to deduce optimization of the design and construction of photovoltaic generation system. The results of this thesis can be summarized as follows. As I-Y characteristics according to a temperature range of 10$\sim$50[], the area of I-V characteristics were increased with an increase in temperature. Since this area corresponds to the power, output power is thought to have increased with temperature.

  • PDF

원자력발전소 기기냉각수계통의 판형열교환기 적용성 (Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor)

  • 임혁순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

임베디드 소프트웨어의 설계모델로부터 에너지 효율을 향상시키기 위한 태스크 도출 (Task Extraction from Software Design Models to Improve Energy Efficiency of Embedded Software)

  • 홍장의;김두환
    • 정보처리학회논문지D
    • /
    • 제18D권1호
    • /
    • pp.45-56
    • /
    • 2011
  • 저전력을 소모하는 임베디드 시스템 개발의 중요성이 증대되고 있다. 저전력 소모의 시스템 개발은 하드웨어 측면에서 많이 연구되어 왔지만, 소프트웨어의 동작이 하드웨어 전력 소모를 유발하기 때문에 소프트웨어의 소모 전력을 분석하는 것 또한 중요한 이슈중의 하나이다. 본 논문에서는 임베디드 소프트웨어 개발 과정에서 작성되는 설계 모델을 이용하여 에너지 효율적인 태스크 도출 방법을 제시한다. 이를 위하여 먼저 태스크 분할 기준을 제시하고, 이를 이용한 UML 설계 모델의 분할 과정을 설명한다. 제안된 태스크 도출 방법은 성능과 함께 전력 소모에 많은 영향을 미치는 임베디드 소프트웨어 개발에 활용하여 선행적으로 에너지 소모량을 절감할 기회를 제공할 수 있다.

Standardized Design of the Transmitting Coils in Inductive Coupled Endoscope Robot Driving Systems

  • Ke, Quan;Jiang, Pingping;Yan, Guozheng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.835-847
    • /
    • 2017
  • A transmitting coil with an optimal topology and number of turns can effectively improve the performance of the wireless power transfer (WPT) systems for endoscope robots. This study proposes the evaluation parameters of the transmitting coils related to the performance of the WPT system to standardize the design of the transmitting coils. It considers both the quality factor of transmitting coils and the coupling factor between the two sides. Furthermore, an analytical model of transmitting coils with different topologies is built to exactly estimate the evaluation parameters. Several coils with the specified topologies are wound to verify the analytical model and the feasibility of evaluation parameters. In the case of a constant power received, the related evaluation parameters are proportional to the transfer efficiency of the WPT system. Therefore, the applicable frequency ranges of transmitting coils with different topologies are determined theoretically. Then a transmitting coil with a diameter of 69 cm is re-optimized both theoretically and experimentally. The transfer efficiency of the WPT system is increased from 3.58% to 7.37% with the maximum magnetic field intensity permitted by human tissue. Finally, the standardized design of the transmitting coil is achieved by summing-up and facilitating the optimization of the coils in various situations.

CATV 및 MATV 시스템용 개량된 약결합 전력분배기와 일반화된 n-분기 전력분배기의 설계에 관한 연구 (Design of an Improved Weakly-Coupled Power Divider and a Generalized n-Way Power Divider for CATV and/or MATV Systems)

  • 김동일;정세모;최재철;손진현;류대근;홍창희
    • 대한전자공학회논문지
    • /
    • 제24권1호
    • /
    • pp.115-122
    • /
    • 1987
  • In this paper, we proposed an improved weakly-coupled power divider(TAP UNIT) for CATV and/or MATV systems, by which the degree of freedom in design and density of coupling interval are signifcantly increased compared with the intrinsic one even though the turn ratios are still of discrete values. On the other hand, the new design theory of a generalized n-way power divider with arbitrary dividing ratios, for CATV and/or MATV systems, which consists of ideal multiwinding transformers and resistors only was presented. Since the circuit elements is not frequency dependent, the proposed power divider is to be of considerably broad bandwidth. Furthermore, the experimental verification has been achieved, and, hence, the validity of the design theory proposed here is confirmed.

  • PDF

중형 이산화탄소 급탕기의 최적 설계 (Optimum Design of Middle-Sized CO2 Water Heater)

  • 박한빛;윤린;김영득
    • 설비공학논문집
    • /
    • 제25권4호
    • /
    • pp.173-179
    • /
    • 2013
  • Middle-sized $CO_2$ water heater having compressor power of 7.45 kW was designed, and its performances were experimentally tested. Besides, optimum design of the $CO_2$ water heater was conducted by cycle simulation. When ambient temperature of $7^{\circ}C$ and hot water outlet temperature of $80^{\circ}C$ the $CO_2$ water heater showed the COP of 3.2. As hot water temperature increased the COP is getting decreased due to significant increase of compressor power consumption compared to increasing rate of heating capacity. When ambient temperature increased from $-3^{\circ}C$ to $12^{\circ}C$ the COP increased by 30%. The optimum components design of a gas cooler, an internal heat exchanger, and an evaporator were conducted, and the experimental correlation between amount of EEV opening and ambient temperature, and hot water temperature was suggested.

Broadband energy harvester for varied tram vibration frequency using 2-DOF mass-spring-damper system

  • Hamza Umar;Christopher Mullen;Soobum Lee;Jaeyun Lee;Jaehoon Kim
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.383-391
    • /
    • 2023
  • Energy harvesting in trams may become a prevalent source of passive energy generation due to the high density of vibrational energy, and this may help power structural health monitoring systems for the trams. This paper presents a broadband vibrational energy harvesting device design that utilizes a varied frequency from a tram vehicle using a 2 DOF vibrational system combined with electromagnetic energy conversion. This paper will demonstrate stepwise optimization processes to determine mechanical parameters for frequency tuning to adjust to the trams' operational conditions, and electromagnetic parameters for the whole system design to maximize power output. The initial optimization will determine 5 important design parameters in a 2 DOF vibrational system, namely the masses (m1, m2 (and spring constants (k1, k2, k3). The second step will use these parameters as initial guesses for the second optimization which will maintain the ratios of these parameters and present electrical parameters to maximize the power output from this system. The obtained values indicated a successful demonstration of design optimization as the average power generated increased from 1.475 mW to 17.44 mW (around 12 times).

Optimum LCVA for suppressing harmonic vibration of damped structures

  • Shum, K.M.;Xu, Y.L.;Leung, H.Y.
    • Smart Structures and Systems
    • /
    • 제20권4호
    • /
    • pp.461-472
    • /
    • 2017
  • Explicit design formulae of liquid column vibration absorber (LCVA) for suppressing harmonic vibration of structures with small inherent structural damping are developed in this study. The developed design formulae are also applicable to the design of a tuned mass damper (TMD) and a tuned liquid column damper (TLCD) for damped structures under harmonic force excitation. The optimum parameters of LCVA for suppressing harmonic vibration of undamped structures are first derived. Numerical searching of the optimum parameters of tuned vibration absorber system for suppressing harmonic vibration of damped structure is conducted. Explicit formulae for these optimum parameters are then obtained by a series of curve fitting techniques. The analytical result shows that the control performance of TLCD for reducing harmonic vibration of undamped structure is always better than that of non-uniform LCVA for same mass and length ratios. As for the effects of structural damping on the optimum parameters, it is found that the optimum tuning ratio decreases and the optimum damping ratio increases as the structural damping is increased. Furthermore, the optimum head loss coefficient is inversely proportional to the amplitude of excitation force and increases as the structural damping is increased. Numerical verification of the developed explicit design expressions is also conducted and the developed expressions are demonstrated to be reasonably accurate for design purposes.