• Title/Summary/Keyword: power harvesting

Search Result 549, Processing Time 0.027 seconds

Estimating Optimal Harvesting Production of Yellow Croaker Caught by Multiple Fisheries Using Hamiltonian Method (해밀토니안기법을 이용한 복수어업의 참조기 최적어획량 추정)

  • Nam, Jong-Oh;Sim, Seong-Hyun;Kwon, Oh-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke Yoshimoto Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.

A Priority Based Transmission Control Scheme Considering Remaining Energy for Body Sensor Network

  • Encarnacion, Nico;Yang, Hyunho
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Powering wireless sensors with energy harvested from the environment is coming of age due to the increasing power densities of both storage and harvesting devices and the electronics performing energy efficient energy conversion. In order to maximize the functionality of the wireless sensor network, minimize missing packets, minimize latency and prevent the waste of energy, problems like congestion and inefficient energy usage must be addressed. Many sleep-awake protocols and efficient message priority techniques have been developed to properly manage the energy of the nodes and to minimize congestion. For a WSN that is operating in a strictly energy constrained environment, an energy-efficient transmission strategy is necessary. In this paper, we present a novel transmission priority decision scheme for a heterogeneous body sensor network composed of normal nodes and an energy harvesting node that acts as a cluster head. The energy harvesting node's decision whether or not to clear a normal node for sending is based on a set of metrics which includes the energy harvesting node's remaining energy, the total harvested energy, the type of message in a normal node's queue and finally, the implementation context of the wireless sensor network.

Design of an Energy Harvesting Full-Wave Rectifier Using High-Performance Comparator (고성능 비교기를 이용한 에너지 하베스팅 전파정류회로 설계)

  • Lee, Dong-Jun;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.429-432
    • /
    • 2017
  • In this paper, a full - wave rectifying harvesting circuit with a high-performance comparator is designed. Designed circuits are divided into Negative Voltage Converter and Active Diode stages. The comparator included in the active diode stage is implemented as a 3-stage type and divided into pre-amplification, decision circuit, and output buffer stages. The main purpose of this comparator is to reduce the propagation delay and improve the voltage and power efficiency of the harvesting circuit. The proposed circuit is designed with magna $0.35{\mu}m$ CMOS process and its operation is verified by simulation. The chip area of the designed energy harvesting circuit is $900{\mu}m{\times}712{\mu}m$.

  • PDF

Key-point detection of fruit for automatic harvesting of oriental melon (참외 자동 수확을 위한 과일 주요 지점 검출)

  • Seung-Woo Kang;Jung-Hoon Yun;Yong-Sik Jeong;Kyung-Chul Kim;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.65-71
    • /
    • 2024
  • In this study, we suggested a key-point detection method for robot harvesting of oriental melon. Our suggested method could be used to detect the detachment part and major composition of oriental melon. We defined four points (harvesting point, calyx, center, bottom) based on tomato with characteristics similar to those of oriental melon. The evaluation of estimated key-points was conducted by pixel error and PDK (percentage of detected key-point) index. Results showed that the average pixel error was 18.26 ± 16.62 for the x coordinate and 17.74 ± 18.07 for the y coordinate. Considering the resolution of raw images, these pixel errors were not expected to have a serious impact. The PDK score was found to be 89.5% PDK@0.5 on average. It was possible to estimate oriental melon specific key-point. As a result of this research, we believe that the proposed method can contribute to the application of harvesting robot system.

A Study on Energy Harvester with Cantilever Structure Using PZT Piezoelectric Material (PZT 압전재료를 이용한 외팔보 구조의 에너지 수집기에 관한 연구)

  • Cha, Doo-Yeol;Lee, Soo-Jin;Chang, Sung-Pil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.416-421
    • /
    • 2011
  • Nowadays, the increasing demands upon mobile devices such as wireless sensor networks and the recent advent of low power electrical devices such as MEMS make such renewable power sources attractive. A vibration-driven MEMS lead zirconate titanate $Pb(Zr,Ti)O_3$ (PZT) cantilever device is developed for energy harvesting application. This paper presents a piezoelectric based energy harvester which is suitable for power generating from conventional vibration and has in providing energy for low power electron ic devices. The PZT cantilever is used d33 mode to get the electrical power. The PZT cantilever based energy harvester with the dimension of 7 mm${\times}$3 mm${\times}$0.03 mm is fabricated using micromachining technologies. This PZT cantilever has the mechanical resonance frequency with a 900 Hz. With these conditions, we get experimentally the 37 uW output power from this device with the application of 1g acceleration using the 900 Hz vibration. From this study, we show the feasibility of one of energy harvesting candidates using PZT based structure. This PZT energy harvester could be used for various applications such a batteryless micro sensors and micro power generators.

Nanogenerator Device Based on Piezoelectric Active Layer of ZnO-Nanowires/PVDF Composite (ZnO-나노와이어/PVDF 복합체를 압전 활성층으로 한 나노발전기 소자)

  • Lim, Young-Taek;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.740-745
    • /
    • 2014
  • ZnO nanowires were grown by hydrothermal synthesis process and piezoelectric poly vinylidene fluoride (PVDF) was then coated on top of the ZnO-nanowires by spray-coating technique. The composite layer of ZnO-nanowires/PVDF was applied to an energy harvesting device based on piezoelectric-conversion mechanism. A defined mechanical force was given to the nanogenerator device to evaluate their electric power generation characteristics, where output current density and voltage were examined. Electric power generation property of the ZnO-nanowires/PVDF based nanogenerator device was compared to that of the nanogenerator device with ZnO-nanowires as single active layer. Effect of the ZnO-nanowires on improvement of power generation was discussed to examine its feasibility for the nanogenerator device.

The design of capacitor-based self-powered artificial neural networks devices (커패시터 기반 자가발전 인공 신경망 디바이스 설계)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.361-367
    • /
    • 2020
  • This paper proposes the battery-less ultra-low-power self-powered cooperating artificial neural networks device for embedded and IoT systems. This device can work without extraneous power supplying and can cooperate with other neuromorphic devices to build large-scale neural networks. This device has energy harvesting modules, so that can build a self-powered system and be used everywhere without space constraints for power supplying.

IV Curve Power Calculating Circuit for PV Energy Harvesting for Low Power IoT Sensor Operation (저전력 IoT 센서 구동을 위한 태양광 에너지 하베스팅을 위한 IV Curve 전력 계산회로)

  • Im, Yun Chan;Oh, Dae-Gyun;Kim, Yong Sin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.159-160
    • /
    • 2019
  • 일반적인 FOCV MPPT는 VOC와 VMPP와의 관계인 ${\alpha}$를 외부에서 지정해준다. 하지만 외부환경 (조도나 온도)에 따라서 태양전지의 ${\alpha}$값이 변화할 가능성이 있다. 본 논문에서는 저전력 IoT 센서의 구동을 위한 태양열 에너지 하베스팅을 위해 IV Curve를 이용한 태양전지 전력 계싼회로를 제안한다. IV Curve를 이용한 태양전지 전력을 직접 계산하여 FOCV MPPT를 개선함으로써 보다 높은 효율의 MPPT가 가능하고 외부환경의 변화에도 충분히 Maximum Power Point Tracking이 가능해지게 된다.

  • PDF

Bidirectional Link Resource Allocation Strategy in GFDM-based Multiuser SWIPT Systems

  • Xu, Xiaorong;Sun, Minghang;Zhu, Wei-Ping;Feng, Wei;Yao, Yingbiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.319-333
    • /
    • 2022
  • In order to enhance system energy efficiency, bidirectional link resource allocation strategy in GFDM-based multiuser SWIPT systems is proposed. In the downlink channel, each SWIPT user applies power splitting (PS) receiver structure in information decoding (ID) and non-linear energy harvesting (EH). In the uplink channel, information transmission power is originated from the harvested energy. An optimization problem is constructed to maximize weighted sum ID achievable rates in the downlink and uplink channels via bidirectional link power allocation as well as subcarriers and subsymbols scheduling. To solve this non-convex optimization problem, Lagrange duality method, sub-gradient-based method and greedy algorithm are adopted respectively. Simulation results show that the proposed strategy is superior to the fixed subcarrier scheme regardless of the weighting coefficients. It is superior to the heuristic algorithm in larger weighting coefficients scenario.

A Power Management Unit for Solar Energy Harvesting (빛 에너지 하베스팅을 위한 전력관리회로)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.267-271
    • /
    • 2012
  • In this paper a power management unit for solar energy harvesting is proposed. If solar energy is sufficient, Power Management Unit(PMU) directly supplies load with solar energy. By contrast, if solar energy is insufficient to operate sensor nodes, voltage booster(VB) boosts the solar cell's output voltage, and then PMU supplies load with the harvested energy. The designed circuit had been fabricated using a 018um CMOS process. In the first case, the PMU supplies load with more energy than in the second case. In the second case where a VB is used, the PMU operates to supply load with solar energy even when illumination is low and minimum solar cells with very low output voltage are used.

  • PDF