• Title/Summary/Keyword: power flow method

Search Result 1,745, Processing Time 0.033 seconds

The Enhancement of Continuation Power Flow at Minimal computational Costs (고속 계산을 위한 연속 조류 계산 시스템의 향상)

  • Park, Min-Seok;Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.13-16
    • /
    • 2000
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near steady-state voltage instability point in conventional power flow. When solving large-scale power transmission systems, continuation power flow require large computational costs. Therefore, technique to improve the speed of continuation power flow system was required. In this paper Decoupled Power Flow Method (DPFM), Enhanced Decoupled Power Flow Method (EDPFM), Robust Fast Decoupled Power Flow Method (RFDPFM) are applied to continuation power flow algorithm to improve the speed of continuation power flow system.

  • PDF

Instantaneous Compensating Power Flow Graph of Active Power Filters Considering Rectification / Inversion Modes (정류와 역변환 모드를 고려한 능동전력필터의 순시 보상전력 흐름도)

  • 정영국;정찬수;배동관;안재영;김광헌;임영철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.101-105
    • /
    • 1999
  • The goal of this paper is to present instantaneous compensating power flow of active power filters(APFs) by graphical method that could be practicable to compensate the power in both case of behaving in instantaneous rectifying mode and instantaneous inverting mode. To ensure the validity of the proposed method, computer simulation is achieved. Proposed method can be present more exquisite and physically meaningful power flow than conventional method in instantaneous compensating power flow Graph of APFs.

  • PDF

An Extended Approach for Newton-Raphson Power Flow Calculation (Newton-Raphson 조류계산법(潮流計算法)의 확장(擴張) 방안(方案) 연구(硏究))

  • Shin, Joong-Rin;Yim, Han-Suck
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.205-210
    • /
    • 1992
  • The power flow calculations are the most important and powerful tools in the various studies of power system engineering. Newton-Raphson method, among the various power flow calculation techniques, is normally used due to its rapidness of numerical convergency. In the conventional Newton-Raphson method, however, there are some unrealistic assumptions, in which all the system power losses are considered to be supplied by the slack bus generator. Introducing the system power loss formula and augmenting the conventional Newton-Raphson power flow method, we can relieve the unrealistic assumption and improve the performance of power flow calculation. In this study, A new approach for handling the losses and augmenting the conventional power flow problem is proposed. The proposed method estimates the increamental changes of active power on each generation bus with respect to the change of total system power losses and the estimated value are used to update the slack bus power. If some studies for more theoritical investigations and verifications are followed, the proposed approach will show some improvement of the conventional method and give lots of contribution to increase the performance of power flow techniques in power systems engineering.

  • PDF

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

A Study on Power Flow Method of Radial Distribution System using a measured data from FRTU in Distribution Automation System (배전자동화 시스템의 단말장치(FRTU)로부터 취득되는 데이터를 이용한 방사상 배전계통 조류계산 방법에 관한 연구)

  • Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.286-287
    • /
    • 2015
  • Currently, Studies on improving the reliability of power supply is becoming an important issue because of the increase in demand of the electric power system. Therefore necessity of automation in distribution system is increasing day by day. However, a measured voltage data from FRTU of distribution automation system is incorrect because of installation space limits. Therefore there is a need of system analysis method by considering the characteristics of the distribution system. For a distribution system, applying the power flow method of transmission system has some problems, as distribution is radial system and it has unbalanced load. Therefore power flow by considering the characteristics of the distribution system have been studied. Existing power flow analysis of the distribution system has different methods like direct analysis method, backward/forward sweep method, modified method of newton raphson etc. In this paper, an improved power flow analysis method based on backward/forward sweep method is proposed in order to efficiently operate the distribution automation system. The proposed method of power flow has been verified through the result of case study.

  • PDF

The Improvement of Continuation Power Flow System Using Decoupled Method (Decoupled법을 이용한 연속조류계산 시스템의 개발)

  • Park, Min-Seok;Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.46-48
    • /
    • 2000
  • Continuation power flow has been developed to remove the ill-condition problem caused by singularity of power flow Jacobian at and near steady-state voltage instability point in conventional power flow. When solving large-scale power transmission systems, an alternative strategy for improving computational efficiency and reducing computer storage requirements is the decoupled power flow method, which makes use of an approximate version of the Newton-Raphson procedure. This paper presents a technique to improve the speed of continuation power flow system using decoupled power flow method.

  • PDF

A Method of Power Transmission Pricing using Power Flow Tracing (전력조류 추적법을 이용한 송전요금 산정법)

  • Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.424-428
    • /
    • 2001
  • The methodologies of power transmission pricing are normally divided into two categories such as marginal cost method and embedded cost allocation method. This paper, first, discusses the possible problems that can occur when the marginal cost method is applied to pricing the transmission services. Next, the paper proposes a method to apply the power flow tracing to the transmission network charge. The result of the power flow tracing method is then used in MW-mile method to charge individual loads for the use of transmission network. Effectiveness of the algorithm is verified by computer simulations.

  • PDF

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • Park, Young-Ho;Hong, Suk-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.164-169
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

Hybrid Type Vibration Power Flow Analysis Method Using SEA Parameters

  • 박영호;홍석윤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.164-164
    • /
    • 2002
  • This paper proposes a hybrid method for vibration analysis in the medium to high frequency ranges using Power Flow Analysis (PFA) algorithm and Statistical Energy Analysis (SEA) coupling concepts. The main part of the developed method is the application of coupling loss factor (CLF) suggested in SEA to the power transmission, reflection coefficients in PI' A boundary conditions. The developed hybrid method shows very promising results with regard to the applications for the various damping loss factors in wide frequency ranges. And also this paper presents the applied results of Power Flow Finite Element Method (PFFEM) by forming the new joint element matrix with CLF to analyze the various plate structures in shape. The analytical results of automobile, complex plate structures show good agreement with those of PFFEM using the PFA coefficients.

A New Concept of Power Flow Analysis

  • Kim, Hyung-Chul;Samann, Nader;Shin, Dong-Geun;Ko, Byeong-Hun;Jang, Gil-Soo;Cha, Jun-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.3
    • /
    • pp.312-319
    • /
    • 2007
  • The solution of the power flow is one of the most important problems in electrical power systems. These traditional methods such as Gauss-Seidel method and Newton-Raphson (NR) method have had drawbacks up to now such as initial values, abnormal operating solutions and divergences in heavy loads. In order to overcome theses problems, the power flow solution incorporating genetic algorithm (GA) is introduced in this paper. General operator of genetic algorithm, arithmetic crossover, and non-uniform mutation operator of GA are suggested to solve the power flow problem. While abnormal solution cannot be obtained by a NR method, multiple power flow solution can be obtained by a GA method. With a heavy load, both normal solution and abnormal solution can be obtained by a proposed method. In this paper, a floating number representation instead of the binary number representation is introduced for accuracy. Simulation results have been compared with traditional methods.