• Title/Summary/Keyword: power flow matrix

Search Result 112, Processing Time 0.032 seconds

A Study on the Sparse Matrix Method Useful to the Solution of a Large Power System (전력계통 해석에 유용한 "스파스"행렬법에 관한 연구)

  • 한만춘;신명철
    • 전기의세계
    • /
    • v.23 no.3
    • /
    • pp.43-52
    • /
    • 1974
  • The matrix inversion is very inefficient for computing direct solutions of the large spare systems of linear equations that arise in many network problems as a large electrical power system. Optimally ordered triangular factorization of sparse matrices is more efficient and offers the other important computational advantages in some applications with this method. The direct solutions are computed from sparse matrix factors instead of a full inverse matrix, thereby gaining a significant advantage is speed and computer memory requirements. In this paper, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the solutions may be applied directly to sove the load flow in an electrical power system. The result of this study should lead to many aplications including short circuit, transient stability, network reduction, reactive optimization and others.

  • PDF

Analysis of Large Power System by Small Digital Computer (소형 digital computer를 이용한 대전력계통의 해석)

  • 박영문;정재길
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 1974
  • This paper attempts to develop the algorithms and computer program for load flow solution and faults analysis of large power system by small digital computer. The Conventional methods for load flow solution and fault analysis of large power system require too much amount of computer memory space and computing time. Therefore, this paper describes the methad for reducing the computer memory space and computing time as follows. (1) Load Flow Solution; This method is to store each primitive impedance of lines along with a list of bus numbers corresponding to the both terminals of lines, and to store only nonzero element of bus admittance matrix. (2) Faults Analysis: This method is to partition a large power system into several groups of subsystems, form individual bus impedance matrix, store them in the storage, and assemble the only required portion of them to original total system by algorithm.

  • PDF

A Three-phase Hybrid Power Flow Algorithm for Meshed Distribution System with Transformer Branches and PV Nodes

  • Li, Hongwei;Wu, Huabing;Jiang, Biyu;Zhang, Anan;Fang, Wei
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.65-75
    • /
    • 2016
  • Aiming at analyzing the power flow of the distribution systems with distribution transformer (DT) branches and PV nodes, a hybrid three-phase power flow methodology is presented in this paper. The incidence formulas among node voltages, loop currents and node current injections have been developed based on node-branch incidence matrix of the distribution network. The method can solve the power flow directly and has higher efficiency. Moreover, the paper provides a modified method to model DT branches by considering winding connections, phase shifting and off-nominal tap ratio, and then DT branches could be seen like one transmission line with the proposed power flow method. To deal with the PV nodes, an improved approach to calculate reactive power increment at each PV node was deduced based on the assumption that the positive-sequence voltage magnitude of PV node is fixed at a given value. Then during calculating the power flow at each iteration, it only needs to update current injection at each PV node with the proposed algorithm. The process is very simple and clear. The results of IEEE 4 nodes and the modified IEEE 34 nodes test feeders verified the correctness and efficiency of the proposed hybrid power flow algorithm.

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Optimal Control Scheme for Matrix Converter (매트릭스컨버터의 최적제어기법 고찰)

  • Cho, Choon-Ho;Mo, Dong-Yeong;Lee, Sang-Chul;Choi, Chang-Young;Lee, Gun-Sik;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.21-22
    • /
    • 2010
  • Matrix converter is direct power conversion system. Matrix converter has many merits that possible bidirectional power flow, input power factor own control and system without DC-link. But matrix converter has some demerits that need many switching devices and switching loss. This paper suggest optimal matrix converter control scheme for improvement for switching loss part. Proposed control scheme verified that 10% improvement in efficiency, input current's harmonic loss and output voltage's EMI improvement.

  • PDF

Topological Observability Analysis Using Incidence Matrix in Power Systems (접속행열을 이용한 전력계통 입상학적 가관측성 해석)

  • Seog-Joo Kim;Young-Hyun Moon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.769-776
    • /
    • 1987
  • This paper deals with the topological observability analysis and the development of an observable island identification algorithm for state estimation in power systems, by using the incidence matrix and bus voltage grouping. An analogy of the DC power flow method to the DC circuit analysis is introduced, and all the relationships between power flows and phase angles are replaced by the corresponding current-voltage relation. As a result, a set of topological measurement equation expressed in the form of the incidince matrix is derived for the topological analysis, and the observability test is carried out by examining the rand of the measuremint matrix. The integer Gauss elimination method is introduced in the determination of matrix rand, so that the proposed observability test yields a precise observability criterion without any nearly-zero pivot problem encountered in the conventional algorithm. Also, an observable island identification algorithm reduced its computational time in comparision with the conventional algorithms. The proposed algorithms have been tested for sample systems, and their practicability has verified.

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (I) - Velocity Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(I) - 작동유체 유속 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.389-394
    • /
    • 2007
  • The power output of the stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of the regenerator matrix, characteristics of working fluid velocities were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. When a regenerator is not filled with any wire screen, working fluid velocity of the oscillating flow shows 1.3 times faster than that of one directional flow. 2. When a regenerator is filled with the wire screen of No.50, working fluid velocity of the oscillating flow reveals 2.5 times faster than that of one directional flow. 3. When a regenerator is filled with the wire screen of No. 100, working fluid velocity of the oscillating flow shows 2 times faster than that of one directional flow, regardless of the number of packed wire screens. 4. Working fluid velocity is decreased wire the increase in number of meshes and packed wire screens.

Vibration Intensity Analysis of Penetration Beam-plate Coupled Structures (관통보와 평판의 연결 구조물에 대한 진동인텐시티 해석)

  • 홍석윤;강연식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-81
    • /
    • 2002
  • The transmission of vibration energy through beam-plate junctions in vibration intensity analysis called power new analysis (PFA) has been studied. PFA is an analytic tool for the prediction of frequency averaged vibration response of built-up structures at medium to high frequency ranges. The power transmission and reflection coefficients between the semi-infinite beam and plate are estimated using the wave transmission approach. For the application of the power coefficients to practical complex structures, the numerical methods, such as finite element method are needed to be adapted to the power flow governing equation. To solve the discontinuity of energy density at the joint, joint matrix is developed using energy flow coupling relationships at the beam-plate joint. Using the joint matrix developed in this paper, an idealized ship stem part is modeled with finite element program, and vibration energy density and intensity are calculated.

HYBRID POWER FLOW ANALYSIS USING SEA PARAMETERS

  • Park, Y.H.;Hong, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.423-439
    • /
    • 2006
  • This paper proposes a hybrid analytic method for the prediction of vibrational and acoustic responses of reverberant system in the medium-to-high frequency ranges by using the PFA(Power Flow Analysis) algorithm and SEA(Statistical Energy Analysis) coupling concepts. The main part of this method is the application of the coupling loss factor(CLF) of SEA to the boundary condition of PFA in reverberant system. The hybrid method developed shows much more promising results than the conventional SEA and equivalent results to the classical PFA for various damping loss factors in a wide range of frequencies. Additionally, this paper presents applied results of hybrid power flow finite element method(hybrid PFFEM) by formulating the new joint element matrix with CLF to analyze the vibrational responses of built-up structures. Finally, the analytic results of coupled plate structures and an automobile-shaped structure using hybrid PFFEM were predicted successively.

A Study on the load Flow Calculation for preserving off Diagonal Element in Jacobian Matrix (Jacobian 행렬의 비 대각 요소를 보존시킬 수 있는 조류계산에 관한 연구)

  • 이종기;최병곤;박정도;류헌수;문영현
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1081-1087
    • /
    • 1999
  • Load Flow calulation methods can usually be divided into Gauss-Seidel method, Newton-Raphson method and decoupled method. Load flow calculation is a basic on-line or off-line process for power system planning. operation, control and state analysis. These days Newton-Raphson method is mainly used since it shows remarkable convergence characteristics. It, however, needs considerable calculation time in construction and calculation of inverse Jacobian matrix. In addition to that, Newton-Raphson method tends to fail to converge when system loading is heavy and system has a large R/X ratio. In this paper, matrix equation is used to make algebraic expression and then to slove load flow equation and to modify above defects. And it preserve P-Q bus part of Jacobian matrix to shorten computing time. Application of mentioned algorithm to 14 bus, 39 bus, 118 bus systems led to identical results and the same numbers of iteration obtained by Newton-Raphson method. The effect of computing time reduction showed about 28% , 30% , at each case of 39 bus, 118 bus system.

  • PDF