• Title/Summary/Keyword: power factor correction (PFC)

Search Result 315, Processing Time 0.026 seconds

Power Conversion Circuits using SiC Schottky Barrier Diode (SiC 다이오드를 이용한 전력변환회로)

  • Lee, Yoo-Shin;Oh, Duk-Jin;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.192-195
    • /
    • 2001
  • In this report, we firstly have investigated the electrical characteristics of silicon carbide (SiC) schottky barrier diode and compared the characteristics to those of conventional Si diode through simulation and experiment. Secondly we have investigated the influence of two kinds of diodes to the power conversion circuit of the systems. From the investigation results it is verified that SiC schottky barrier diode is more superior to Si diode in thermal and reverse recovery, characteristics, which are the important factors in the size reduction and higher reliability of the systems. Finally though the experiment applied to PFC(Power Factor Correction) circuits, we precisely verified excellency to thermal characteristic of SiC schottky barrier diode any other diode.

  • PDF

A Novel Soft Switching PWM·PFC AC·DC Boost Converter

  • Sahin, Yakup
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.256-262
    • /
    • 2018
  • This study introduces a novel Soft Switching (SS) Pulse Width Modulated (PWM) AC-DC boost converter. In the proposed converter, the main switch is turned on with Zero Voltage Transition (ZVT) and turned off with Zero Current Transition (ZCT). The main diode is turned on with Zero Voltage Switching (ZVS) and turned off with Zero Current Switching (ZCS). The auxiliary switch is turned on and off with ZCS. All auxiliary semiconductor devices are turned on and off with SS. There is no extra current or voltage stress on the main semiconductor devices. The majority of switching energies are transferred to the output by auxiliary transformer. Thus, the current stress of auxiliary switch is significantly reduced. Besides, the proposed converter has simple structure and ease of control due to common ground. The theoretical analysis of the proposed converter is verified by a prototype with 100 kHz switching frequency and 500 W output power. Furthermore, the efficiency of the proposed converter is 98.9% at nominal output power.

New Zero-Current-Transition (ZCT) Circuit Cell Without Additional Current Stress

  • Kim, C.E.;Park, E.S.;G.W. Moon
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.215-223
    • /
    • 2003
  • In this paper, a new zero-current-transition (ZCT) circuit cell is proposed. The main switch is turned-off under the zero current and zero voltage condition, and there is no additional current stress and voltage stress in the main switch and the main diode, respectively. The auxiliary switch is turned-off under the zero voltage condition, and the main diode is turned-on under the zero voltage condition. The resonant current required to obtain the ZCT condition is relatively small and regenerated to the input voltage source. The operational principles of a boost converter integrated with the proposed ZCT circuit cell are analyzed and verified by the simulation and experimental results.

Design of a Converter with Anti-blinking Circuitry for T5 LED Indirect Lighting

  • Woo-young, Kim;Quoc Cuong Nguyen;Seong-Kweon Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.103-111
    • /
    • 2024
  • We address the problematic issue of blinking in residential LED lighting systems-a phenomenon that has recently become a significant concern due to voltage sags caused by high-power household appliances. To combat this, we developed a two-stage LED converter with integrated anti-blinking circuitry, specifically designed for T5 LED indirect lighting fixtures. The first stage employs a Power Factor Correction (PFC) boost circuit to enhance voltage stability by aligning the voltage and current phases, thereby minimizing power losses. The second stage, a meticulously engineered DC-DC buck converter, ensures stable lighting despite electrical fluctuations. Rigorous testing has confirmed our converter's efficacy in maintaining consistent light output without blinking, thereby substantially improving user comfort and adhering to strict standards for harmonic distortion and electromagnetic compatibility. Our breakthrough provides a robust solution to a pressing issue, marking a significant advancement in LED lighting technology.

A Study on the Design and Rectification Method of a KW class Power Converter Unit for an Aircraft Mounted Guided Missile (항공기 장착 유도탄의 KW급 전력변환장치 설계와 정류방식에 따른 연구)

  • Kim, Hyung-Jae;Jung, Jae-Won;Lee, Dong-Hyeon;Kim, Gil-Hoon;Moon, Mi-Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.99-104
    • /
    • 2022
  • Recently, the domestic demand for weapon systems based on aircraft platforms is gradually increasing. In particular, the demand for effective precision guided missile(PGM) which cruises for several hundred kilometers after launch to strike the ground target is rising drastically, but it is in the early stages of development, and research based on it are limited. This paper is a study on the power converter unit(PCU) within PGM which is mounted on an aircraft platform based on MIL-STD-1760, which is an interface between an aircraft and PGM. We investigated the electrical properties and structure of the umbilical connector, and the aircraft/store electrical interconnection system. Also, the focus on the design specifications of the PCU that supplies power were described. This result 3 phase AC input, which is the state for the guided simulation power supply in the state of being mounted on an aircraft that rectification method with power factor correction(PFC) compared to bridge rectifier circuit. In the future, it may be used as a basis for power supply design on aircraft mounted weapon systems.

The Cost-effective Eletronic ballast for Metal halide Lamp using DSP (DSP를 이용한 비용 절감형 메탈할라이드 램프용 전자식 안정기)

  • Han, Sang-Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.108-112
    • /
    • 2017
  • High-intensity-discharge lamps are widely utilized in outdoor and indoor lighting circumstances that need high luminance. In lighting applications for MHD lamps, the size of the lamp ballast circuit is an important factor and should be as small as possible. The electronic ballast for MHD lamps is superior to the electromagnetic(EM) ballast in that it saves energy, and has smaller volume and lighter weight. In this paper, highly efficient cost-effective and small sized electronic ballast for Metal Halide Lamp with high power factor using Digital Signal Processor are proposed. The proposed electronic ballast for MHD lamps combines a boost PFC converter with a half-bridge inverter, the algorithms of the power factor correction and ballast control were implemented using the TI's TMS320LF2406 CPU. Experimental results validate the ballast is also useful and reasonably suggested.

A Study on Step Up-Down AC-DC Converter with DCM-ZVS of High Performance (고성능 DCM-ZVS 스텝 업-다운 AC-DC 컨버터에 관한 연구)

  • Kwak, Dong-Kurl
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.335-342
    • /
    • 2012
  • This paper is studied on a new DCM-ZVS step up-down AC-DC converter of high performance, that is, high system efficiency and power factor correction (PFC). The switching devices in the proposed converter are operated by soft switching technique using a new quasi-resonant circuit, and are driven with discontinuous conduction mode (DCM) according to pulse width modulation (PWM). The quasi-resonant circuit uses a step up-down inductor and a loss-less snubber capacitor. The proposed converter with DCM also simplifies the requirement of control circuits and reduces the number of control components. The input AC current waveform in the proposed converter becomes a quasi-sinusoidal waveform proportional to the magnitude of input AC voltage under constant switching frequency. As a result, the proposed converter obtains low switching power loss and high efficiency, and its input power factor is nearly in unity. The validity of the analytical findings is confirmed by some computer simulation results and experimental results.

A Study on ZVT Boost Converter Using a ZCS Auxiliary Circuit (ZCS 보조회로를 이용한 ZVT Boost 컨버터에 관한 연구)

  • Ryu D.K.;Lee W.S.;Choi T.Y.;Seo M.S.;Won C,Y.;Kim Y.R.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.129-132
    • /
    • 2001
  • Recently, a ZVT boost converter is embedded in a power factor correction system. The control circuit of the converter assures soft-switching for all the MOSFETs and load regulation. The PFC system contains additional control circuits which assure the input voltage in a sinusoidal form and feed-forward line voltage regulation. In this paper, a soft switching boost converter with zero-voltage transition(ZVT) main switch using zero-current switching(ZCS) auxiliary switch is proposed. Operating intervals of the converter are persented and analyzed. The proposed results show that the main switch maintains UT while auxiliary switch retains ZCS for the complete specified line and load conditions.

  • PDF

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

The ballast for mercury-free lamp with Xe (Xe(제논)을 이용한 무수은 면광원 안정기)

  • Jeong, Hye-Man;Park, Dong-Hyeok;Kim, Jong-Hyeon;Min, Byeong-Deok;Song, Ui-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.351-353
    • /
    • 2008
  • 최근에 환경친화적인 관점에서 많은 형태의 무수은을 이용한 형광램프가 연구되어오고 있다. 그 중에서도 제논을 이용한 형광램프는 수은을 대체하는 방전기체의 조건을 만족하고 있다. 따라서 제논을 이용한 면광원의 구동 시 지금의 수은이 들어간 광원의 구동에 있어서 안정기요건이 차이가 있으므로, 본 논문에서 제논을 이용한 면광원을 위한 안정기를 제안한다. 제안된 면광원 안정기는 크게 AC입력 측의 PFC (power factor correction)부분과 면광원을 구동하는 인버터 부분으로 구성되어있다. 특히, 인버터 부분에서는 제논 면광원의 특성에 대응하기 위해서 정전력회로, 아크 방지 기동회로 등이 포함되어 있다.

  • PDF