• 제목/요약/키워드: power distribution

검색결과 6,671건 처리시간 0.031초

Integrated Operation of Power Conversion Module for DC Distribution System (직류 배전 시스템을 위한 전력 변환 모듈의 통합 운전)

  • Lee, Hee-Jun;Shin, Soo-Choel;Hong, Suk-Jin;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.240-248
    • /
    • 2014
  • It is DC power that Output of renewable energy being recently developed and researched. Also, demand of DC power will expect to proliferate due to increase of digital load. Thus, DC distribution system providing high quality of power and reliability has emerged as a new distribution system. If the conventional distribution systems are substituted by proposed DC distribution system, the output of renewable energy can be connected with distribution systems under minimum power conversion. Therefore, in the event of connection with DC load, it can construct an efficient distribution system. In this paper, the integrated parallel operation of power conversion module for DC distribution system is proposed. Also, this paper proposed modularization of power conversion devices for DC distribution system and power control for parallel operation of large capacity system. DC distribution system consists of three power conversion modules such as AC/DC power conversion module 2 set, ESS module 1 set. DC distribution system controls suitable operation depending on the status of the DC power distribution system and load. Integrated operation of these systems is verified by simulation and experiment results.

On the STSP Normal Distribution

  • Choi, Jeen-Kap
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권2호
    • /
    • pp.451-456
    • /
    • 2005
  • We introduce the standard two-sided power normal distribution and consider the relation between the probability in standard two-sided power distribution and the probability in standard two-sided power normal distribution and obtain the even moment of the special two-sided power normal distribution including the cases considered by Gupta and Nadarajah(2004)

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

ON-LINE CALCULATION OF 3-D POWER DISTRIBUTION

  • Park, Y. H.;W. K. In;Park, J. R.;Lee, C. C.;G. S. Auh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.459-464
    • /
    • 1996
  • The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future.

  • PDF

Electric power distribution system most suitable investment precedence decision aspect of the reliability side (신뢰도 측면에서 본 배전계통 최적투자 우선순위 결정)

  • Lee, Hee-Tae;Kim, Jae-Chul;Moon, Jong-Fil;Park, Hyun-Taek;Park, Chang-Ho;Park, Sang-Man
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.384-386
    • /
    • 2003
  • Striking in change that present our country is much by electricity industry reform and the Korea Electric Power Corporation is deciding power distribution system reliability indices every year but power distribution system for reliability evaluation and establishment of investment program are consisting punily. If consider efficient inflection of resources and hereafter power distribution division that is limited for target achievement of schedule level service evaluation and reliability side in operation of the power distribution system, can expect efficient practical use of the power distribution property if gains in electrical side about these change and most suitable investment way consist because there is necessity of electric power plan establishment of area electric power distribution place of business unit. This paper consider proper reliability level and maximum effect through quantitative analysis to gain electrical gains of the power distribution system in reliability side depending on trend DB(Data Base) of data of electric power system composition appliance in this treatise and apply data administration and reliability rate analysis that serve to decide most suitable investment precedence to supply of electric power property to power distribution system present investment algorithm.

  • PDF

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • 제22권2호
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 한국조명전기설비학회 2005년도 춘계학술대회논문집
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

Power Flow Calculation Method of DC Distribution Network for Actual Power System

  • Kim, Juyong;Cho, Jintae;Kim, Hongjoo;Cho, Youngpyo;Lee, Hansang
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.419-425
    • /
    • 2020
  • DC distribution system has been evaluated as an excellent one in comparison with existing AC distribution network because it needs fewer power conversion stages and the full capacity of the equipment can be used without consideration for power factor. Recently, research and development on the implementation of DC distribution networks have been progressed globally based on the rapid advancement in power-electronics technology, and the technological developments from the viewpoint of infrastructure are also in progress. However, to configure a distribution network which is a distribution line for DC, more accurate and rapid introduction of analysis technology is needed for the monitoring, control and operation of the system, which ensure the system run flexible and efficiently. However, in case of a bipolar DC distribution network, there are two buses acting as slack buses, so the Jacobian matrix cannot be configured. Without solving this problem, DC distribution network cannot be operated when the network is unbalanced. Therefore, this paper presented a comprehensive method of analysis with consideration of operating elements which are directly connected between neutral electric potential caused by the unbalanced of load in DC distribution network with bipolar structure.

Voltage Measurement Accuracy Assessment System for Distribution Equipment of Smart Distribution Network

  • Cho, Jintae;Kwon, Seong-chul;Kim, Jae-Han;Won, Jong-Nam;Cho, Seong-Soo;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1328-1334
    • /
    • 2015
  • A new system for evaluating the voltage management errors of distribution equipment is presented in this paper. The main concept of the new system is to use real distribution live-line voltage to evaluate and correct the voltage measurement data from distribution equipment. This new approach is suitable for a new Distribution Management System (DMS) which has been developed for a distribution power system due to the connection of distributed generation growth. The data from distribution equipment that is installed at distribution lines must be accurate for the performance of the DMS. The proposed system is expected to provide a solution for voltage measurement accuracy assessment for the reliable and efficient operation of the DMS. An experimental study on actual distribution equipment verifies that this voltage measurement accuracy assessment system can assess and calibrate the voltage measurement data from distribution equipment installed at the distribution line.

An extraction technique of automatic recognizing regions on Power distribution facility map (배전설비도면에서의 자동인식 대상 영역 추출 방법)

  • Kim, Gye-Young;Keun, Bok-Hee;Lee, Bong-Jae;Cho, Seon-Ku
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2914-2916
    • /
    • 1999
  • A power distribution facility map is composed of distribution facility information regions, cadastral regions and grid lines. In this map, our goal is automatic interpretation of power distribution region. For the goal, it is the first work to extract the power distribution facility region. In this paper, we propose a method to extract power distribution facility regions. The proposed method is consist of two phases, binarization phase and extending phase. The first phase generate a power distribution facility image using threshold value. The image contains many part of power distribution facility regions, but not all. The second phase extends thinned image which is generated by appling thinning operator to the power distribution facility image.

  • PDF