Journal of Korean
Data \& Information Science Society
2005, Vol. 16, No. 2, pp. $451 \sim 456$

On the STSP Normal Distribution

Jeen Kap Choi1)

Abstract

We introduce the standard two-sided power normal distribution and consider the relation between the probability in standard two-sided power distribution and the probability in standard two-sided power normal distribution and obtain the even moment of the special two-sided power normal distribution including the cases considered by Gupta and Nadarajah(2004)

Keywords : beta normal distribution, inverse triangular distribution, standard two-sided power distribution, standard two-sided power normal distribution, triangular distribution

1. Introduction

Van Dorp and Kotz(2002) introduced the standard two-sided power(STSP) distribution including the uniform, a triangular and power function distributions and pointed out that the flexibility of the STSP class is comparable to that of the beta family. Let X be a random variable with probability density function given by

$$
f(x \mid \theta, n)= \begin{cases}n\left(\frac{x}{\theta}\right)^{n-1,} & 0<x \leq \theta \tag{1}\\ n\left(\frac{1-x}{1-\theta}\right)^{n-1}, & \theta<x<1\end{cases}
$$

Then we will be said to follow a standard two-sided power distribution with parameters θ, n and we will denote it by $\operatorname{STSP}(\theta, n), 0 \leqq \theta \leqq 1, n>0$, where n is not necessarily an integer.

[^0]Gupta and Nadarajah(2004) introduced the beta normal distribution with the probability density function given by

$$
\begin{equation*}
f(x \mid \alpha, \beta)=\frac{1}{\sigma B(\alpha, \beta)} \Phi\left(\frac{x-\mu}{\sigma}\right)^{\alpha-1}\left(1-\Phi\left(\frac{x-\mu}{\sigma}\right)\right)^{\beta-1} \phi\left(\frac{x-\mu}{\sigma}\right) \tag{2}
\end{equation*}
$$

where $\phi(\cdot)$ and $\Phi(\cdot)$ denote the probability density function and the cumulative distribution function of the standard normal distribution respectively. They considered the moments in cases of $\alpha=2, \beta=1$ and $\alpha=1, \beta=2$.

If F denotes the cumulative distribution function of the normal distribution with parameters μ and σ^{2}, then we can define the cumulative distribution function of STSP normal distribution by

$$
\begin{equation*}
G(y)=\int_{0}^{F(y)} f(x \mid \theta, n) d x, \quad 0 \leq \theta \leq 1, \quad n>0 \tag{3}
\end{equation*}
$$

Substituting the normal cumulative distribution function into (3) and differentiating it with respect to y, we get the corresponding probability density function

$$
\begin{align*}
g(y \mid \theta, n) & = \begin{cases}\frac{2^{\frac{1}{2}-n} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} n \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)^{n-1}\right.}{\sqrt{\pi} \sigma}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right) \leqq \theta \\
\frac{2^{\frac{1}{2}-n} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} n(1-\theta)^{1-n}\left(1+\operatorname{Erfc}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)^{n-1}\right.}{\sqrt{\pi} \sigma}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)>\theta\end{cases} \tag{4}\\
& = \begin{cases}\frac{1}{\sigma} n \theta^{1-n} \phi\left(\frac{y-\mu}{\sigma}\right)\left(\Phi\left(\frac{y-\mu}{\sigma}\right)\right)^{n-1}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right) \leqq \theta \\
\frac{1}{\sigma} n(1-\theta)^{1-n} \phi\left(\frac{y-\mu}{\sigma}\right)\left(1-\Phi\left(\frac{y-\mu}{\sigma}\right)\right)^{n-1}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)>\theta\end{cases} \tag{5}
\end{align*}
$$

where the error function

$$
\operatorname{Erf}(x)=1-\operatorname{Erfc}(x)=1-\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) d t .
$$

Remark $g(y \mid \theta=1, n=2)$ in (4) is equal to the probability density function of the case of $\alpha=2, \beta=1$ in (2) and $g(y \mid \theta=0, n=2)$ in (4) is equal to the probability density function of the case of $\alpha=1, \beta=2$ in (2).

2. Main Results

The calculations of the paper make use of the well known complementary error function defined by

$$
\operatorname{Erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} \exp \left(-t^{2}\right) d t
$$

(See Section 2.8 in volume 2 of Prudnikov et al.(1990). The properties of this function that we shall need are:

$$
1-\Phi(x)=\frac{1}{2} \operatorname{Erfc}\left(\frac{x}{\sqrt{2}}\right)
$$

If $n=2 m$ and $c^{2}+p>0$ then

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} \exp \left(-p x^{2}\right) \operatorname{Erfc}(c x) d x=\frac{(-1)^{m}}{\sqrt{\pi}} \frac{\partial^{m}}{\partial p^{m}}\left[\frac{1}{\sqrt{p}} \operatorname{Tan}^{-1}\left(\frac{\sqrt{p}}{c}\right)\right] \tag{6}
\end{equation*}
$$

, and If $n=2 m+1, m$ is even, and $c^{2}+p>0$, then

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} \exp \left(-p x^{2}\right) \operatorname{Erfc}(c x) d x=\frac{(-1)^{m} m!}{2 p^{m+1}}-\frac{(-1)^{m} c}{2} \frac{\partial^{m}}{\partial p^{m}}\left[\frac{1}{p \sqrt{p+c^{2}}}\right] \tag{7}
\end{equation*}
$$

If $n=2 m+1, m$ is odd, and $c^{2}+p>0$, then

$$
\begin{equation*}
\int_{0}^{\infty} x^{n} \exp \left(-p x^{2}\right) \operatorname{Erfc}(c x) d x=\frac{(-1)^{m+1} m!}{2 p^{m+1}}-\frac{(-1)^{m} c}{2} \frac{\partial^{m}}{\partial p^{m}}\left[\frac{1}{p \sqrt{p+c^{2}}}\right] \tag{8}
\end{equation*}
$$

Remark. We split the incorrect Equation 2.8 .9 in volume 2 of Prudnikov et al.(1990) into the above correct equations (7) and (8) (See Choi(2005), Letter to the Editor. Communications in Statistics Theory and Methods. Vol. 34, No. 4: to appear)

Theorem 1. (1) $\int_{0}^{\theta} f(x \mid \theta, n) d x=\theta$ for all θ, n,

$$
\text { (2) } \int_{-\infty}^{\mu+\sqrt{2} \sigma E r f^{-1}(0,2 \theta-1)} g(y \mid \theta, n) d y=\theta \text { for all } \theta, n
$$

where the inverse error function $\operatorname{Erf}^{-1}(0,2 \theta-1)$ is defined as the solution for z in the equation $\operatorname{Erf}(z)=2 \theta-1$.

Proof. It is clear that $\int_{0}^{\theta} f(x \mid \theta, n) d x=\theta$ for all θ, n.
Since

$$
\begin{gathered}
g(y \mid \theta, n)= \begin{cases}\frac{1}{\sigma} n \theta^{1-n} \phi\left(\frac{y-\mu}{\sigma}\right)\left(\Phi\left(\frac{y-\mu}{\sigma}\right)\right)^{n-1}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right) \leq \theta \\
\frac{1}{\sigma} n(1-\theta)^{1-n} \phi\left(\frac{y-\mu}{\sigma}\right)\left(1-\Phi\left(\frac{y-\mu}{\sigma}\right)\right)^{n-1}, & \frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)>\theta\end{cases} \\
\frac{1}{2}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right) \leqq \theta \text { if and only if } y \leqq \mu+\sqrt{2} \sigma \operatorname{Erf}^{-1}(0,2 \theta-1) \text {, and } \\
\frac{d}{d y}\left(2^{-n} \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)^{n}=2^{\frac{1}{2}-n} e^{-\frac{(y-\mu)^{2}}{2 \sigma^{2}}} n \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)^{n-1},\right. \\
\int_{-\infty}^{\mu+\sqrt{2} \sigma E r f^{-1}(0,2 \theta-1)} g(y \mid \theta, n) d y= \\
\int_{-\infty}^{\mu+\sqrt{2} \sigma E r f^{-1}(0,2 \theta-1)} \frac{d}{d y}\left(2^{-n} \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)^{n} d y,\right.
\end{gathered}
$$

moreover

$$
\left(2^{-n} \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)^{n} \rightarrow \theta \text { as } y \rightarrow \mu+\sqrt{2} \sigma \operatorname{Erf}^{-1}(0,2 \theta-1)\right.
$$

and

$$
\left(2^{-n} \theta^{1-n}\left(1+\operatorname{Erf}\left(\frac{y-\mu}{\sqrt{2} \sigma}\right)\right)^{n} \rightarrow 0 \text { as } y \rightarrow-\infty\right.
$$

Therefore

$$
\int_{-\infty}^{\mu+\sqrt{2} \sigma E r f^{-1}(0,2 \theta-1)} g(y \mid \theta, n) d y=\theta .
$$

Corollary 2. If $\mu=0, \theta=\frac{1}{2}$, then
(1) $f(x \mid \theta, n)$ is symmetric about $x=\frac{1}{2}$ for all $n>0$,
(2) $g(y \mid \theta, n)$ is symmetric about $y=0$ for all $n>0, \sigma^{2}>0$,
(3) $\int_{0}^{\theta} f(x \mid \theta, n) d x=\frac{1}{2}=\int_{-\infty}^{\mu+\sqrt{2} \sigma E r f^{-1}(0,2 \theta-1)} g(y \mid \theta, n) d y$

Proof. Since $\theta=\frac{1}{2}$, it is clear that $f(x \mid \theta, n)$ is symmetric about $x=\frac{1}{2}$ for
all $n>0$. Since $1+\operatorname{Erf}\left(-\frac{y}{\sqrt{2} \sigma}\right)=\operatorname{Erf}\left(\frac{y}{\sqrt{2} \sigma}\right)$ for all $\sigma>0$, it is clear that $g(y \mid \theta, n)$ is symmetric about $y=0$ for all $n>0, \sigma^{2}>0$.
Next, we consider the probability density function of the cases $\mu=0, \sigma^{2}=1, \theta=\frac{1}{2}$ in (5). Then

$$
g\left(y \left\lvert\, \frac{1}{2}\right., n\right)= \begin{cases}\frac{n e^{-\frac{y^{2}}{2}}\left(1+\operatorname{Erf}\left[\frac{y}{\sqrt{2}}\right]\right)^{n-1}}{\sqrt{2 \pi}}, & y \leqq 0 \tag{10}\\ \frac{n e^{-\frac{y^{2}}{2}}\left(-1+\operatorname{Erf}\left[\frac{y}{\sqrt{2}}\right]\right)^{n-1}}{\sqrt{2 \pi}}, & y>0\end{cases}
$$

Let $Y_{(1)} \leqq Y_{(2)} \leqq \cdots \leqq Y_{(n)}$ be the order statistics from standard normal distribution $N(0,1)$, Then we obtain the following theorem

Theorem 3. The negative part of (10) is equal to 2^{n-1} times the negative part of probability density function of $Y_{(n)}$ and The positive part of (10) is equal to 2^{n-1} times the positive part of probability density function of $Y_{(1)}$.

If $n=2, \theta=\frac{1}{2}$, then the graph of the probability density function in (1) is a symmetric triangular, and hence the probability density function in (10) is also symmetric about $y=0$. Therefore we know that the $(2 n+1)$ th moments of Y are all 0 . we can obtain the $2 n$th moments of Y.
Theorem 4. Let Y be the random variable with the probability density function in (10).
If $n=2$, then the $2 n$th moment of Y s given by

$$
\begin{aligned}
E\left(Y^{2 n}\right) & =2 \int_{0}^{\infty} y^{2 n} e^{-\frac{y^{2}}{2}} \operatorname{Erfc}\left(\frac{y}{\sqrt{2}}\right) d y \\
& =\left.2 \sqrt{\frac{2}{\pi}} \frac{(-1)^{n}}{\sqrt{\pi}} \frac{\partial^{n}}{\partial p^{n}}\left(\frac{1}{\sqrt{p}} \operatorname{Tan}^{-1}(\sqrt{2 p})\right)\right|_{p=\frac{1}{2}}
\end{aligned}
$$

Proof. It is clear from (6) that Theorem 4 holds.

We considered the case that the probability density function in (1) is a symmetric triangular. Next, we consider the case that the probability density function is a symmetric inverse triangular, Let X be a random variable with the probability density function:

$$
f(x)= \begin{cases}2-4 x, & 0 \leqq x \leqq \frac{1}{2} \\ -2+4 x, & \frac{1}{2}<x \leqq 1\end{cases}
$$

Then, it is from (3) and (5) that the probability density function of Y is given by

$$
g(y)= \begin{cases}-e^{-\frac{y^{2}}{2}} \sqrt{\frac{2}{\pi}} \operatorname{Erf}\left(\frac{y}{\sqrt{2}}\right), & y<0 \tag{11}\\ e^{-\frac{y^{2}}{2}} \sqrt{\frac{2}{\pi}} \operatorname{Erf}\left(\frac{y}{\sqrt{2}}\right), & y \geqq 0\end{cases}
$$

Theorem 5. Let Y be the random variable with the probability density function in (11).
Then the odd moments of Y are all 0 and the even moment of Y is given by

$$
\begin{align*}
E\left(Y^{2 n}\right) & =2 \int_{0}^{\infty} y^{2 n} e^{-\frac{y^{2}}{2}} \sqrt{\frac{2}{\pi}} \operatorname{Erf}\left(\frac{y}{\sqrt{2}}\right) d y \\
& =\left.2 \sqrt{\frac{2}{\pi}} \frac{(-1)^{n}}{\sqrt{\pi}} \frac{\partial^{n}}{\partial p^{n}}\left(\frac{1}{\sqrt{p}} \tan ^{-1}\left(\frac{1}{\sqrt{2 p}}\right)\right)\right|_{p=\frac{1}{2}}
\end{align*}
$$

Remark 6. We can not obtain the closed form expressions for $E\left(Y^{n}\right)$ in cases of $\mu \neq 0$, or $\theta \neq \frac{1}{2}$.

References

1. Gupta, Arjun K. and Nadarajah, Saralees (2004), On the Moments of the Beta Normal Distributions. Communications in Statistics Theory and Methods. 31:497-512.
2. Jeen Kap Choi(2005), Letter to the Editor, Communications in Statistics Theory and Methods. 34(to appear).
3. Prudnikov, A. P., Brychkov, Y.A., and Marichev, O. I. (1990), Integral and Series. Vol. 2 Amsterdam, Gordon and Breach Science Publishers.
4. Van Dorp, J. R. and Kotz, S. (2002), The Standard Two-Sided Power Distribution and its Properties : With Applications in Financial Engineering. The American Statistician, Vol. 56, No.2, 90-99.
[received date : Nov. 2004, accepted date May. 2005]

[^0]: 1) Professor, Department of Statistics, Kyungpook National University, Daegu, 702-701, Korea.
 E-mail : choijk@knu.ac.kr
