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On the STSP Normal Distribution
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Abstract

We introduce the standard two-sided power normal distribution and 
consider the relation between the probability in standard two-sided power 
distribution and the probability in standard two-sided power normal 
distribution and obtain the even moment of the special two-sided power 
normal distribution including the cases considered by Gupta and 
Nadarajah(2004)

Keywords : beta normal distribution, inverse triangular distribution, 
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1. Introduction

Van Dorp and Kotz(2002) introduced the standard two-sided power(STSP) 

distribution including the uniform, a triangular and power function distributions and 

pointed out that the flexibility of the STSP class is comparable to that of the beta 

family. Let X  be a random variable with probability density function given by

f(x∣θ,n)={
n(
x
θ
) n-1, 0<x≤θ

n(
1- x
1-θ

)
n-1
, θ < x < 1

                     (1)

Then we will be said to follow a standard two-sided power distribution with 

parameters θ,   n  and we will denote it by STSP(θ, n), 0 θ 1,   n> 0,  where 

n  is not necessarily an integer.
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Gupta and Nadarajah(2004) introduced the beta normal distribution with the 

probability density function given by

f(x∣α,β)=
1

σB(α,β)
Φ(
x-μ
σ
) α-1(1-Φ(

x-μ
σ
)) β-1φ(

x-μ
σ
),     (2)

where φ(⋅)  and Φ(⋅)  denote the probability density function and the 

cumulative distribution function of the standard normal distribution respectively. 

They considered the moments in cases of α = 2,   = 1  and α = 1,   = 2 .

If F  denotes the cumulative distribution function of the normal distribution with 

parameters μ  and σ
2, then we can define the cumulative distribution function of 

STSP normal distribution by

G(y)=⌠⌡

F ( y )

0
f(x∣θ,n) dx,   0≤θ≤1, n > 0,                   (3)

Substituting the normal cumulative distribution function into (3) and 

differentiating it with respect to y, we get the corresponding probability density 

function

 g (y│θ, n ) =






  

2
1

2
−n

e
−

(y−µ )2

2σ2

n   θ1−n (1 + Erf (
y −µ√

2σ
)n −1

√
πσ

, 1
2

(1 + Erf ( y −µ√
2σ

)) θ

  

2
1
2
−n

e
−

(y−µ )2

2σ2

n  (1− θ )1−n(1 +Erfc ( y −µ√
2σ

)n −1

√
πσ

, 1
2

(1 + Erf ( y −µ√
2σ

)) > θ

   (4)

          =




1
σ

n   θ 1 − n  φ ( y − µ
σ

)(Φ ( y − µ
σ

))n − 1,                                                                     1
2

(1 + Erf ( y − µ√
2σ

)) θ

1
σ

n (1 − θ )1 − n  φ ( y − µ
σ

)(1 − Φ ( y − µ
σ

))n − 1,   1
2

(1 + Erf ( y − µ√
2σ

))> θ

        (5)

where the error function

Erf (x ) = 1 − Erfc (x ) = 1 −
2√
π x

∞
 exp (− t 2 )  dt. 

Remark g (y│θ = 1, n = 2 )  in (4) is equal to the probability density function 

of the case of α = 2,   = 1  in (2) and g (y│θ = 0, n = 2 )  in (4) is equal to the 

probability density function of the case of α = 1,   = 2  in (2).
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2. Main Results

The calculations of the paper make use of the well known complementary error 

function defined by

Erfc(x)=
2
π
⌠
⌡

∞

x
exp (- t

2
) dt

(See Section 2.8 in volume 2 of Prudnikov et al.(1990). The properties of this 

function that we shall need are:

1-Φ(x)=
1
2
Erfc(

x
2
)

If n=2m  and c
2+p> 0  then

0

∞
x n exp (− p x 2 )Erfc(cx ) dx =

(− 1 )m

√
π

∂m

∂p m
[

1√
p

 Tan − 1 (

√
p

c
)]      (6)

, and If n = 2m + 1 , m  is even, and c 2 + p > 0 , then      

0

∞
x n exp (− p x 2 )Erfc(c x ) dx =

(− 1 )mm!

2p m + 1
−

(− 1 )mc
2

∂m

∂p m
[

1

p
√

p + c 2
]    (7)

If n = 2m + 1 , m  is odd, and c 2 + p > 0 , then

0

∞
x n exp (− p x 2 )Erfc(c x ) dx =

(− 1 )m + 1m!

2p m + 1
−

(− 1 )mc
2

∂m

∂p m
[

1

p
√

p + c 2
]   (8)

Remark. We split the incorrect Equation 2.8.9 in volume 2 of Prudnikov et 

al.(1990) into the above correct equations (7) and (8) (See Choi(2005), Letter to the 

Editor. Communications in Statistics Theory and Methods. Vol. 34, No. 4: to 

appear)

Theorem 1. ① 
0

θ

f (x│θ, n) dx = θ  for all θ, n,

                 ② 
−∞
µ+

√
2σErf− 1 (0,2θ − 1)

g (y│θ, n) dy = θ  for all θ, n

where the inverse error function Erf − 1 (0, 2θ− 1 )  is defined as the solution for z  
in the equation Erf (z ) = 2θ− 1 .



Jeen Kap Choi454

Proof. It is clear that 
0

θ

f (x│θ, n) dx = θ  for all θ, n.

Since 

g(y∣θ,n)={
1
σ
n θ

1- nφ(
y-μ
σ
)(Φ(

y-μ
σ
))
n-1, 

1
2
(1+Erf(

y-μ
2σ
))≤θ

1
σ
n (1-θ)

1- nφ(
y-μ
σ
)(1-Φ(

y-μ
σ
))
n-1, 

1
2
(1+Erf(

y-μ
2σ
)) >θ

1
2

(1 + Erf(
y− µ√

2 σ
)) θ  if and only if y µ +

√
2 σErf − 1 (0, 2θ− 1 ) , and

d
dy

(2− nθ1 − n (1 + Erf (
y− µ√

2σ
))n = 2

1
2

− n

e
−

(y − µ)2

2σ2

nθ1 − n (1 + Erf (
y− µ√

2 σ
))n − 1 ,

−∞
µ+

√
2σErf− 1(0,2θ − 1)

g (y│θ, n) dy =

                            
−∞
µ+

√
2σErf− 1(0,2θ − 1) d

dy
(2− nθ1 − n (1 + Erf (

y− µ√
2σ

))ndy,

moreover

(2− nθ1 − n (1 + Erf (
y− µ√

2σ
))n  →  θ  as y  →  µ +

√
2 σErf − 1 (0, 2θ− 1 ) ,

and

(2− nθ1 − n (1 + Erf (
y− µ√

2σ
))n  →  0  as y  →  −∞ .

Therefore

−∞
µ+

√
2σErf− 1(0,2θ − 1)

g (y│θ, n) dy = θ.                ∥

Corollary 2. If µ = 0, θ =
1
2
, then 

①  f (x│θ, n)  is symmetric about x =
1
2
 for all n> 0 ,

②  g (y│θ, n )  is symmetric about y = 0  for all n> 0,σ2 > 0 ,               (9)

③  
0

θ

f (x│θ, n) dx =
1
2

=
−∞
µ+

√
2σErf− 1(0,2θ − 1)

g (y│θ, n) dy

Proof. Since θ =
1
2
, it is clear that f (x│θ, n)  is symmetric about x =

1
2
 for 
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all n> 0 . Since 1 + Erf (−
y√
2 σ

) = Erf (
y√
2 σ

)  for all σ > 0 , it is clear that 

g (y│θ, n )  is symmetric about y = 0  for all n > 0, σ2 > 0 . 

Next, we consider the probability density function of the cases 

µ = 0,σ2 = 1, θ =
1
2
 in (5). Then 

g (y│ 1
2

, n) =





n  e
−

y 2

2 (1 + Erf [
y√
2

])n − 1

√
2π

,   y 0

n  e
−

y 2

2 (− 1 + Erf [
y√
2

])n − 1

√
2π

,   y> 0

            (10)

Let Y(1 ) Y(2) Y(n )  be the order statistics from  standard normal 

distribution N (0, 1 ), Then we obtain the following theorem 

Theorem 3. The negative part of (10) is equal to 2n − 1  times the negative part 

of probability density function of Y(n )  and The positive part of (10) is equal to 

2n − 1  times the positive part of probability density function of Y(1).            ∥

If n = 2,   θ = 1
2
, then the graph of the probability density function in (1) is a 

symmetric triangular, and hence the probability density function in (10) is also 

symmetric about y = 0 . Therefore we know that the (2n + 1)th moments of Y  
are all 0. we can obtain the 2nth moments of Y . 

Theorem 4.  Let Y  be the random variable with the probability density 

function in (10).

If n = 2 , then the 2nth moment of Y  s given by 

                E (Y 2n ) = 2
0

∞
y 2ne

−
y 2

2 Erfc (
y√
2

) dy

                        = 2

√
2
π

(− 1 )n

√
π

∂n

∂p n








1√
p

Tan − 1 (
√

2p ) │
p =

1
2

. 

Proof. It is clear from (6) that Theorem 4 holds.                            ∥

We considered the case that the probability density function in (1) is a 

symmetric triangular. Next, we consider the case that the probability density 

function is a symmetric inverse triangular, Let X  be a random variable with the 

probability density function:
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f (x ) =






2 − 4x,   0 x
1
2

− 2 + 4x,   
1
2
< x 1

Then, it is from (3) and (5) that the probability density function of Y is given by

g (y) =





− e
−

y 2

2

√
2
π

Erf (
y√
2

), y< 0

e
−

y 2

2

√
2
π

Erf (
y√
2

), y 0

                 (11)

Theorem 5. Let Y be the random variable with the probability density function 

in (11).

Then the odd moments of Y  are all 0 and the even moment of Y is given by 

               E (Y 2n ) = 2
0

∞
y 2ne

−
y 2

2

√
2
π

Erf (
y√
2

) dy

                       = 2

√
2
π

(− 1 )n

√
π

∂n

∂p n








1√
p

 tan −1 (
1√
2p

) │
p = 1

2

.         ∥

Remark 6. We can not obtain the closed form expressions for E (Y n )  in cases 

of µ=0 , or θ=
1
2
.
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