• Title/Summary/Keyword: power coupler

Search Result 326, Processing Time 0.026 seconds

Wavelength-division multiplexing channel isolation filter using a side-polished fiber coupler (측면 연마 광섬유 결합기를 이용한 파장분할 다중화 채널분리 필터)

  • 손경락;김광택;송재원
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.461-466
    • /
    • 2002
  • Fiber-optic comb filters using a side-polished fiber coupler are proposed as multi-channel isolation filters on wavelength division multiplexing systems. We have demonstrated that the coupling efficiency between two waveguides is improved by the intermediate coupling layer in spite of the decrease of the optical power transfer between two waveguides due to the high-order modes of the overlay waveguide coupled with the side-polished single-mode fiber. When LiNbO$_3$with a 200-${\mu}{\textrm}{m}$-thickness was applied as a planar-overlay-waveguide, the comb filtering characteristics with a 4 nm-channel-spacing were achieved and the maximum power coupling occurred at the 1-${\mu}{\textrm}{m}$-thickness and the refractive index in range 1.52 to 1.53 of an intermediate coupling layer. If the intermediate coupling layer is optimized, an extinction ratio with more than 20 dB can be obtained. These experimental results are in good agreement with the BPM simulation.

The optimization of output coupler reflectivity of high repetitive pulsed Nd:YAG laser system adopted 3-mesh parallel sequential charge and discharge method (3단 병렬 충.방전 방식을 적용한 고반복 펄스형 Nd:YAG 레이저 출력거울 반사율의 최적화)

  • 김휘영;홍수열;김동수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.369-376
    • /
    • 2001
  • The optimization of resonator and laser power supply has been considered to be significant for improving the efficiency of a pulsed Nd:YAG laser system. We have proposed a new method of 3-mesh parallel sequential charge and discharge circuit as a laser power supply; more compact than conventional power supply, competitive in price, easy to control the laser power density according to various material processing, and equipped with the optimum reflectivity of output coupler. In this study, we could find that the maximum laser output was obtained by using 85% of reflectivity in the case of 50[W]-class. In addition using the power supply of new method, it's possible to charge each capacitor bank with a higher energy within the given charging time adopted a new method mentioned above; namely, we can allow each capacitor to have much more charging time and storage energy. So, higher laser output was obtained than conventional power supply.

  • PDF

Design of A Asymmetric Branch Line Coupler Using Artificial Dielectric Substrate (가유전체 기판을 이용한 비대칭 브랜치 라인 커플러의 설계)

  • Lim, Jong-Sik;Lee, Jae-Hoon;Kwon, Kyung-Hoon;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2319-2324
    • /
    • 2012
  • In this paper, the design of asymmetric branch line couplers using artificial dielectric substrate (ADS) is described. The effective permittivity and permeability increase in ADS because of the lots of the inserted via-holes. So the physical length and width of transmission lines realized on ADS are reduced compared to the standard lines. This enables one to design size-reduced microwave circuits. As an instance in this work, an asymmetric branch line coupler with the ratio of 3:1 is designed at 2GHz. The designed coupler has a small size of 53.4% compared to the normal circuit while the same performances are preserved. A good agreement between the simulated and measured asymmetric power dividing ratio is shown. The measured loss is only less than 0.2dB, which is a very small value.

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices (광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가)

  • Jin, Jinung;Chun, Kwon-Wook;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.4
    • /
    • pp.137-145
    • /
    • 2022
  • A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

Modeling and Characterization of Low Voltage Access Network for Narrowband Powerline Communications

  • Masood, Bilal;Haider, Arsalan;Baig, Sobia
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.443-450
    • /
    • 2017
  • Nowadays, Power Line Communication (PLC) is gaining high attention from industry and electric supply companies for the services like demand response, demand side management and Advanced Metering Infrastructure (AMI). The reliable services to consumers using PLC can be provided by utilizing an efficient PLC channel for which sophisticated channel modeling is very important. This paper presents characterization of a Low Voltage (LV) access network for Narrowband Power Line Communications (NB-PLC) using transmission line (TL) theory and a Simulink model. The TL theory analysis not only includes the constant parameters but frequency selectivity is also introduced in these parameters such as resistance, conductance and impedances. However, the proposed Simulink channel model offers an analysis and characterization of capacitive coupler, network impedance and channel transfer function for NB-PLC. Analysis of analytical and simulated results shows a close agreement of the channel transfer function. In the absence of a standardized NBPLC channel model, this research work can prove significant in improving the efficiency and accuracy of NB-PLC communication transceivers for Smart Grid communications.

Reliability Improvement of Insulation Diagnosis Using the Hydro-Generator On-Line Partial Discharge Monitoring System (수력발전기 On-line 부분방전 측정 시스템을 이용한 절연상태 진단의 신뢰성 향상)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Lim, Jae-Il;Park, Ji-Kun;Kwak, Won-Ku;Lee, Jae-Heung;Shin, Jae-Pil;Shin, Byoung-Chol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.469-475
    • /
    • 2009
  • Accident dangerousness of domestic hydro power generators which are operated in Korea is on the increase because of use at the long term. On this, the Off-line diagnosis techniques developed to the On-line by continued domestic technical development since 2000. Especially, On-line insulation diagnosis of domestic hydro power generator is possible by localization of partial electric discharge sensor and On-line insulation diagnosis system. This paper shows the diagnosis result that is applied localized Ceramic Coupler and PDMS-HG(Partial Discharge Monitoring System for Hydro Generator) at four Chung-ju hydro Generator used for 25 years. Particularly, the confidence of insulation diagnosis is improved by using high frequency filter and sampling the partial discharge signals which occur in site. For reviewing the confidence of On-Line insulation diagnosis system, we measured the outside noises and partial discharge signals during practical operation by using the partial discharge diagnosis system of the Full A/D process. And we reviewed the confidence of the On-Line insulation diagnosis system by comparing and analyzing these data.

Refractive Index Control of Silicon Oxynitride Thick Films on Core Layer of Silica Optical Waveguide (실리카 광도파로의 Core층인 Silicon Oxynitride후박의 굴절률 제어)

  • 김용탁;조성민;윤석규;서용곤;임영민;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.6
    • /
    • pp.594-597
    • /
    • 2002
  • Silicon Oxynitride(SiON) thick films on p-type silicon(100) wafers have obtained by using plasma-enhanced chemical vapor deposition from SiH$_4$ , N$_2$O and N$_2$. Prism coupler measurements show that the refractive indices of SiON layers range from 1.4620 to 1.5312. A high deposition power of 180 W leads to deposition rates of up to 5.92${\mu}$m/h. The influence of the deposition condition on the chemical composition was investigated using X-ray photoelectron spectroscopy. After deposition of the SiON thick films, the films were annealed at 1050$^{\circ}C$ in a nitrogen atmosphere for 2 h to remove absorption band near 1.5${\mu}$m.