Browse > Article
http://dx.doi.org/10.3807/KJOP.2022.33.4.137

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices  

Jin, Jinung (Department of Electronics Engineering, Pusan National University)
Chun, Kwon-Wook (Department of Electronics Engineering, Pusan National University)
Lee, Eun-Su (Department of Electronics Engineering, Pusan National University)
Oh, Min-Cheol (Department of Electronics Engineering, Pusan National University)
Publication Information
Korean Journal of Optics and Photonics / v.33, no.4, 2022 , pp. 137-145 More about this Journal
Abstract
A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.
Keywords
Beam propagation method; Directional coupler; Silica waveguide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zhou, D. A. Husseini, J. Li, Z. Lin, S. Sukhishvili, G. L. Cote, R. Gutierrez-Osuna, and P. T. Lin, "Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors," Sci. Rep. 12, 5572 (2022).   DOI
2 A. Nakao, S. Yamada, T. Katsuyama, O. Kawasaki, K. Iwabata, Y. Yabe, K. Horii, and A. Himeno, "Compact full-color laser beam scanning image projector based on a waveguide- type RGB combiner," J. Soc. Inform. Display 30, 24-32 (2021).
3 S.-M. Kim, E.-S. Lee, K.-W. Chun, J. Jin, and M.-C. Oh, "Compact solid-state optical phased array beam scanners based on polymeric photonic integrated circuits," Sci. Rep. 11, 10576 (2021).   DOI
4 B. G. Lee and N. Dupuis, "Silicon photonic switch fabrics: technology and architecture," J. Lightw. Technol. 37, 6-20 (2019).   DOI
5 C.-P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, "A review and perspective on optical phased array for automotive LiDAR," IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
6 Q. Q. Song, Z. F. Hu, and K. X. Chen, "Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide," Appl. Opt. 57, 4434-4439 (2018).   DOI
7 Z. Xuan and F. Aflatouni, "Integrated coherent optical receiver with feed-forward carrier recovery," Opt. Express 28, 16073-16088 (2020).   DOI
8 L. A. Valenzuela, Y. Xia, A. Maharry, H. Andrade, C. L. Schow, and J. F. Buckwalter, "A 50-GBaud QPSK optical receiver with a phase/frequency detector for energy-efficient intra-data center interconnects," IEEE Open J. Solid-State Circuits Soc. 2, 50-60 (2022).   DOI
9 D. Liu, S. Sun, X. Yin, B. Sun, J. Sun, Y. Liu, W. Li, N. Zhu, and M. Li, "Large-capacity and low-loss integrated optical buffer," Opt. Express 27, 11585-11593 (2019).   DOI
10 T. Alexoudi, G. T. Kanellos, and N. Pleros, "Optical RAM and integrated optical memories: a survey," Light: Sci. Appl. 9, 91 (2020).   DOI
11 D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Lange, W. Freude, and C. Koos, "Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics," Light: Sci. Appl. 10, 64 (2021).   DOI
12 C. V. Poulton, "Integrated LIDAR with optical phased arrays in silicon photonics," M. S. Thesis, Massachusetts Institute of Technology, USA (2016).
13 K. M. Yoo, J. Midkiff, A. Rostamian, C.-J. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor," ACS Sensors 5, 861-869 (2020).   DOI
14 K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, "Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-∆ silica PLC connector," J. Lightw. Technol. 37, 116-122 (2019).   DOI
15 T.-H. Park, S.-M. Kim, E.-S. Lee, and M.-C. Oh, "Polymer waveguide tunable transceiver for photonic front-end in the 5G wireless network," Photon. Res. 9, 181-186 (2021).   DOI
16 S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, "Bias-free optical current sensors based on quadrature interferometric integrated optics," Opt. Express 26, 31599-31606 (2018).   DOI
17 M. Rakowski, C. Meagher, K. Nummy, A. Aboketaf, J. Ayala, Y. Bian, B. Harris, K. Mclean, K. McStay, A. Sahin, L. Medina, B. Peng, Z. Sowinski, A. Stricker, T. Houghton, C. Hedges, K. Giewont, A. Jacob, T. Letavic, D. Riggs, A. Yu, and J. Pellerin, "45 nm CMOS - silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects," in Proc. Optical Fiber Communication Conference 2020 (Optica Publishing Group, 2020), p. T3H.3.
18 A. Nakao, S. Yamada, and T. Katsuyama, "Efficient waveguide-type four-color (red-green-blue-infrared) laser beam combiner for compact laser beam scanning image projectors," Opt. Rev. 29, 1-7 (2022).   DOI
19 C. Huang, S. Fujisawa, T. F. de Lima, A. N. Tait, E. C. Blow, Y. Tian, S. Bilodeau, A. Jha, F. Yaman, H.-T. Peng, H. G. Batshon, B. J. Shastri, Y. Inada, T. Wang, and P. R. Prucnal, "A silicon photonic-electronic neural network for fibre nonlinearity compensation," Nat. Electron. 4, 837-844 (2021).   DOI
20 K. Gallacher, P. F. Griffin, E. Riis, M. Sorel, and D. J. Paul, "Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems," APL Photonics 7, 046101 (2022).   DOI
21 D. Petrovszki, S. Valkai, E. Gora, M. Tanner, A. Banyai, P. Furjes, and A. Der, "An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria," Microelectron. Eng. 239-240, 111523 (2021).   DOI
22 K. Bohnert, A. Frank, L. Yang, X. Gu, and G. M. Muller, "Polarimetric fiber-optic current sensor with integrated-optic polarization splitter," J. Lightw. Technol. 37, 3672-3678 (2019).   DOI
23 X. Chen, G. Raybon, D. Che, J. Cho, and K. W. Kim, "Transmission of 200-GBaud PDM probabilistically shaped 64-QAM signals modulated via a 100-GHz thin-film LiNbO3 I/Q modulator," in Proc. Optical Fiber Communication Conference 2021 (Optica Publishing Group, 2021), p. F3C-5.
24 Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications," Adv. Mater. Tech. 5, 1901153 (2020).   DOI