DOI QR코드

DOI QR Code

Effectiveness of Beam-propagation-method Simulations for the Directional Coupling of Guided Modes Evaluated by Fabricating Silica Optical-waveguide Devices

광도파로 모드 간의 방향성 결합현상에 대한 빔 진행 기법 설계의 효율성 및 실리카 광도파로 소자 제작을 통한 평가

  • Jin, Jinung (Department of Electronics Engineering, Pusan National University) ;
  • Chun, Kwon-Wook (Department of Electronics Engineering, Pusan National University) ;
  • Lee, Eun-Su (Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Department of Electronics Engineering, Pusan National University)
  • 진진웅 (부산대학교 전자공학과, 광직접회로 연구실) ;
  • 천권욱 (부산대학교 전자공학과, 광직접회로 연구실) ;
  • 이은수 (부산대학교 전자공학과, 광직접회로 연구실) ;
  • 오민철 (부산대학교 전자공학과, 광직접회로 연구실)
  • Received : 2022.07.14
  • Accepted : 2022.07.26
  • Published : 2022.08.25

Abstract

A directional coupler device, one of the fundamental components of photonic integrated circuits, distributes optical power by evanescent field coupling between two adjacent optical waveguides. In this paper, the design process for manufacturing a directional coupler device is reviewed, and the accuracy of the design results, as seen from the characteristics of the actual fabricated device, is confirmed. When designing a directional coupler device through a two-dimensional (2D) beam-propagation-method (BPM) simulation, an optical structure is converted to a two-dimensional planar structure through the effective index method. After fabricating the directional coupler device array, the characteristics are measured. To supplement the 2D-BPM results that are different from the experimental results, a 3D-BPM simulation is performed. Although 3D-BPM simulation requires more computational resources, the simulation result is closer to the experimental results. Furthermore, the waveguide core refractive index used in 3D-BPM is adjusted to produce a simulation result consistent with the experimental results. The proposed design procedure enables accurate design of directional coupler devices, predicting the experimental results based on 3D-BPM.

광집적회로(photonic integrated circuits) 소자의 기본적인 부품 중 하나인 방향성 결합기 소자는 두 개의 인접한 광도파로 사이에서 일어나는 모드 간 광결합에 의해서 광파워를 분배하는 기능을 가진다. 본 논문에서는 방향성 결합기 소자를 제작하기 위한 설계 과정에 대하여 살펴보고 실제로 제작된 소자의 특성으로부터 설계 결과의 정확도에 대하여 확인하는 과정을 수행한다. 빔전파기법(beam propagation method, BPM) 시뮬레이션을 통하여 방향성 결합기 소자를 설계하는 과정에서, 유효굴절률 계산을 통하여 2차원 평면 구조로 변환된 소자에 대한 이차원 BPM 설계를 하여서 소자 구조를 확정하고, 실리카 광도파로 방향성 결합기 소자를 어레이 형태로 제작한 뒤 특성을 측정하였다. 실험 결과와 차이를 보이는 2D BPM 설계 결과를 보완하기 위하여 계산량이 훨씬 많은 3D BPM 설계를 수행하였으며 그 결과는 실험 결과에 더욱 근접하였다. 실험 결과와 일치하는 설계 결과를 얻기 위하여 3D BPM에 사용된 광도파로 코어 굴절률을 미세하게 보정하였으며 이를 통하여 실험치를 정확히 예측 가능한 BPM 설계를 수행하는 방법을 확립하였다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Z. Xuan and F. Aflatouni, "Integrated coherent optical receiver with feed-forward carrier recovery," Opt. Express 28, 16073-16088 (2020). https://doi.org/10.1364/oe.389865
  2. L. A. Valenzuela, Y. Xia, A. Maharry, H. Andrade, C. L. Schow, and J. F. Buckwalter, "A 50-GBaud QPSK optical receiver with a phase/frequency detector for energy-efficient intra-data center interconnects," IEEE Open J. Solid-State Circuits Soc. 2, 50-60 (2022). https://doi.org/10.1109/OJSSCS.2022.3150291
  3. D. Liu, S. Sun, X. Yin, B. Sun, J. Sun, Y. Liu, W. Li, N. Zhu, and M. Li, "Large-capacity and low-loss integrated optical buffer," Opt. Express 27, 11585-11593 (2019). https://doi.org/10.1364/oe.27.011585
  4. B. G. Lee and N. Dupuis, "Silicon photonic switch fabrics: technology and architecture," J. Lightw. Technol. 37, 6-20 (2019). https://doi.org/10.1109/jlt.2018.2876828
  5. T. Alexoudi, G. T. Kanellos, and N. Pleros, "Optical RAM and integrated optical memories: a survey," Light: Sci. Appl. 9, 91 (2020). https://doi.org/10.1038/s41377-020-0325-9
  6. D. Kohler, G. Schindler, L. Hahn, J. Milvich, A. Hofmann, K. Lange, W. Freude, and C. Koos, "Biophotonic sensors with integrated Si3N4-organic hybrid (SiNOH) lasers for point-of-care diagnostics," Light: Sci. Appl. 10, 64 (2021). https://doi.org/10.1038/s41377-021-00486-w
  7. D. Petrovszki, S. Valkai, E. Gora, M. Tanner, A. Banyai, P. Furjes, and A. Der, "An integrated electro-optical biosensor system for rapid, low-cost detection of bacteria," Microelectron. Eng. 239-240, 111523 (2021). https://doi.org/10.1016/j.mee.2021.111523
  8. C.-P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella, "A review and perspective on optical phased array for automotive LiDAR," IEEE J. Sel. Top. Quantum Electron. 27, 8300416 (2021).
  9. C. V. Poulton, "Integrated LIDAR with optical phased arrays in silicon photonics," M. S. Thesis, Massachusetts Institute of Technology, USA (2016).
  10. K. Bohnert, A. Frank, L. Yang, X. Gu, and G. M. Muller, "Polarimetric fiber-optic current sensor with integrated-optic polarization splitter," J. Lightw. Technol. 37, 3672-3678 (2019). https://doi.org/10.1109/jlt.2019.2919387
  11. K. M. Yoo, J. Midkiff, A. Rostamian, C.-J. Chung, H. Dalir, and R. T. Chen, "InGaAs membrane waveguide: a promising platform for monolithic integrated mid-infrared optical gas sensor," ACS Sensors 5, 861-869 (2020). https://doi.org/10.1021/acssensors.0c00180
  12. X. Chen, G. Raybon, D. Che, J. Cho, and K. W. Kim, "Transmission of 200-GBaud PDM probabilistically shaped 64-QAM signals modulated via a 100-GHz thin-film LiNbO3 I/Q modulator," in Proc. Optical Fiber Communication Conference 2021 (Optica Publishing Group, 2021), p. F3C-5.
  13. K. Suzuki, R. Konoike, J. Hasegawa, S. Suda, H. Matsuura, K. Ikeda, S. Namiki, and H. Kawashima, "Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-∆ silica PLC connector," J. Lightw. Technol. 37, 116-122 (2019). https://doi.org/10.1109/jlt.2018.2867575
  14. Q. Q. Song, Z. F. Hu, and K. X. Chen, "Scalable and reconfigurable true time delay line based on an ultra-low-loss silica waveguide," Appl. Opt. 57, 4434-4439 (2018). https://doi.org/10.1364/AO.57.004434
  15. S.-M. Kim, E.-S. Lee, K.-W. Chun, J. Jin, and M.-C. Oh, "Compact solid-state optical phased array beam scanners based on polymeric photonic integrated circuits," Sci. Rep. 11, 10576 (2021). https://doi.org/10.1038/s41598-021-90120-x
  16. T.-H. Park, S.-M. Kim, E.-S. Lee, and M.-C. Oh, "Polymer waveguide tunable transceiver for photonic front-end in the 5G wireless network," Photon. Res. 9, 181-186 (2021). https://doi.org/10.1364/PRJ.411137
  17. S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, "Bias-free optical current sensors based on quadrature interferometric integrated optics," Opt. Express 26, 31599-31606 (2018). https://doi.org/10.1364/oe.26.031599
  18. M. Rakowski, C. Meagher, K. Nummy, A. Aboketaf, J. Ayala, Y. Bian, B. Harris, K. Mclean, K. McStay, A. Sahin, L. Medina, B. Peng, Z. Sowinski, A. Stricker, T. Houghton, C. Hedges, K. Giewont, A. Jacob, T. Letavic, D. Riggs, A. Yu, and J. Pellerin, "45 nm CMOS - silicon photonics monolithic technology (45CLO) for next-generation, low power and high speed optical interconnects," in Proc. Optical Fiber Communication Conference 2020 (Optica Publishing Group, 2020), p. T3H.3.
  19. Y. Su, Y. Zhang, C. Qiu, X. Guo, and L. Sun, "Silicon photonic platform for passive waveguide devices: materials, fabrication, and applications," Adv. Mater. Tech. 5, 1901153 (2020). https://doi.org/10.1002/admt.201901153
  20. C. Huang, S. Fujisawa, T. F. de Lima, A. N. Tait, E. C. Blow, Y. Tian, S. Bilodeau, A. Jha, F. Yaman, H.-T. Peng, H. G. Batshon, B. J. Shastri, Y. Inada, T. Wang, and P. R. Prucnal, "A silicon photonic-electronic neural network for fibre nonlinearity compensation," Nat. Electron. 4, 837-844 (2021). https://doi.org/10.1038/s41928-021-00661-2
  21. J. Zhou, D. A. Husseini, J. Li, Z. Lin, S. Sukhishvili, G. L. Cote, R. Gutierrez-Osuna, and P. T. Lin, "Detection of volatile organic compounds using mid-infrared silicon nitride waveguide sensors," Sci. Rep. 12, 5572 (2022). https://doi.org/10.1038/s41598-022-09597-9
  22. K. Gallacher, P. F. Griffin, E. Riis, M. Sorel, and D. J. Paul, "Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems," APL Photonics 7, 046101 (2022). https://doi.org/10.1063/5.0077738
  23. A. Nakao, S. Yamada, T. Katsuyama, O. Kawasaki, K. Iwabata, Y. Yabe, K. Horii, and A. Himeno, "Compact full-color laser beam scanning image projector based on a waveguide- type RGB combiner," J. Soc. Inform. Display 30, 24-32 (2021).
  24. A. Nakao, S. Yamada, and T. Katsuyama, "Efficient waveguide-type four-color (red-green-blue-infrared) laser beam combiner for compact laser beam scanning image projectors," Opt. Rev. 29, 1-7 (2022). https://doi.org/10.1007/s10043-021-00712-1