• Title/Summary/Keyword: power converters

Search Result 1,407, Processing Time 0.018 seconds

Load Dispatching Control of Multiple-Parallel-Converters Rectifier to Maximize Conversion Efficiency

  • Orihara, Dai;Saitoh, Hiroumi;Higuchi, Yuji;Babasaki, Tadatoshi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1132-1136
    • /
    • 2014
  • In the context of increasing electric energy consumption in a data center, energy efficiency improvement is strongly emphasized. In a data center, electric energy is largely consumed by DC power supply system, which is based on a rectifier composed by multiple parallel converters. Therefore, rectifier efficiency must be improved for minimizing loss of DC power supply system. Rectifier efficiency can be modulated by load allocation to converters because converter efficiency depends on input AC power. In this paper, we propose a new control method to maximize rectifier efficiency. The method can control load allocation to converters by introducing active power converter control scheme and start-and-stop of converters. In order to illustrate optimal load allocations in a rectifier, a maximization problem of rectifier efficiency is formulated as a nonlinear optimization one. The problem is solved by Lagrangian relaxation method and the computation results provide the validity of proposed method.

A Novel DPP Converter Integrating Converters for Multiple Photovoltaic Submodules (다수의 Photovoltaic Submodule용 컨버터를 통합한 DPP 컨버터)

  • Lim, Ji-Hoon;Lee, Dong-In;Hyeon, Ye-Ji;Choi, Jae-Hyuk;Youn, Han-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, photovoltaic (PV) systems have been gradually applied in eco-friendly vehicle applications to improve fuel economy. The relevant market is expected to continue to grow because the installation of large-capacity PV systems to other eco-friendly vehicles, such as electric buses and trains, is being considered. However, in a PV system, power imbalance between submodules and low power generation efficiency occur due to factors such as cell aging, contamination, and shading. To resolve this problem, various differential power processing (DPP) converters have been researched and developed. However, conventional DPP converters suffer from large volume and low efficiency. Therefore, to apply DPP converters to eco-friendly vehicles, increasing efficiency and reducing volume and price compared with existing DPP converters is necessary. In this paper, a novel DPP converter with an integrated transformer is proposed and analyzed. The proposed DPP converter uses a single magnetic component by integrating transformers and secondary sides of conventional DPP converters. Therefore, the proposed DPP converter shows high power density and high efficiency, and it is suitable for PV systems in eco-friendly vehicle applications.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

Bridgeless Buck PFC Rectifier with Improved Power Factor

  • Malekanehrad, Mahdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.323-331
    • /
    • 2018
  • Buck power factor correction (PFC) converters, compared with conventional boost PFC converters, exhibit high efficiency performance in the entire range of universal line voltage. This feature has gotten more attention for eliminating the zero crossing dead angle of buck PFC rectifiers. Furthermore, bridgeless structures for the reduction of conduction losses have been proposed. The aim of this paper is to introduce a single-phase buck rectifier that simultaneously has unity power factor (PF) and bridgeless structure while operating in the continuous conduction mode (CCM). For this purpose, two auxiliary flyback converters without any active switches are applied to a bridgeless buck rectifier to eliminate the zero crossing dead angle and achieve unity power factor, low total harmonic distortion (THD) and high efficiency. The operation and design considerations of the proposed rectifier are verified on a 150W, 48V prototype using a conventional peak-current-mode control. The measurement results show that the proposed rectifier has nearly unity power factor, THD less than 7% and high efficiency.

Control of Parallel Connected Three-Phase PWM Converters without Inter-Module Reactors

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.116-122
    • /
    • 2015
  • This paper presents a new current sharing control strategy for parallel-connected, synchronised three-phase DC-AC converters employing space vector pulse width modulation (SVPWM) without current sharing reactors. Unlike conventional control methods, the proposed method breaks the paths of the circulating current by dividing the switching cycle evenly between parallel connected equally rated converters. Accordingly, any inter-module reactors or circulating current control will be redundant, leading to reductions in system costs, size, and control algorithm complexity. Each converter in the new scheme employs a synchronous dq current regulator that uses only local information to attain a desired converter current. A stability analysis of the current controller is included together with a simulation of the converter and load current waveforms. Experimental results from a 2.5kVA test rig are included to verify the proposed control method.

Analysis, Design, Modeling, Simulation and Development of Single-Switch AC-DC Converters for Power Factor and Efficiency Improvement

  • Singh, Bhim;Chaturvedi, Ganesh Dutt
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • This paper addresses several issues concerning the analysis, design, modeling, simulation and development of single-phase, single-switch, power factor corrected AC-DC high frequency switching converter topologies with transformer isolation. A detailed analysis and design is presented for single-switch topologies, namely forward buck, flyback, Cuk, Sepic and Zeta buck-boost converters, with high frequency isolation for discontinuous conduction modes (DCM) of operation. With an awareness of modem design trends towards improved performance, these switching converters are designed for low power rating and low output voltage, typically 20.25W with 13.5V in DCM operation. Laboratory prototypes of the proposed single-switch converters in DCM operation are developed and test results are presented to validate the proposed design and developed model of the system.

Electrical Technologies for Grid Integration of Ocean Wave Power into the UK National Grid

  • Ahmed, Tarek
    • Journal of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.320-327
    • /
    • 2010
  • In this paper, multiple offshore wave energy converters with different output characteristics are connected to one power distribution substation. The connection between the power take-off of the different wave energy converters and the electrical power transmission system is presented in order to investigate whether multiple wave energy converters can augment energy yield and improve network integration capabilities. Moreover, the model of an array of wave energy converters is developed with the goal of analyzing the effects of the offshore wave farm on the electrical network to which it is connected. It is also developed to ensure that the electricity generated by the array is sufficiently controllable, and of a quality that can be integrate into the electricity supply network without unduly increasing the cost of connection, production or delivery.

Comparative Analysis of Three-Phase AC-DC Converters Using HIL-Simulation

  • Raihan, Siti Rohani Sheikh;Rahim, Nasrudin Abd.
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.104-112
    • /
    • 2013
  • This paper presents a comparative evaluation of various topologies for three-phase power converters using the hardware-in-the-loop (HIL) simulation technique. Various switch-mode AC-DC power converters are studied, and their performance with respect to total harmonic distortion (THD), efficiency, power factor and losses are analyzed. The HIL-simulation is implemented in an Altera Cyclone II DE2 Field Programmable Gate Array (FPGA) Board and in the Matlab/Simulink environment. A comparison of the simulation and HIL-simulation results is also provided.

A Novel Pulse-Width and Amplitude Modulation (PWAM) Control Strategy for Power Converters

  • Ghoreishy, Hoda;Varjani, Ali Yazdian;Farhangi, Shahrokh;Mohamadian, Mustafa
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.374-381
    • /
    • 2010
  • Typical power electronic converters employ only pulse width modulation (PWM) to generate specific switching patterns. In this paper, a novel control strategy combining both pulse-width and amplitude modulation strategies (PWAM) has been proposed for power converters. The Pulse Amplitude Modulation (PAM), used in communication systems, has been applied to power electronic converters. This increases the degrees of freedom in eliminating or mitigating harmonics when compared to the conventional PWM strategies. The role of PAM in the novel PWAM strategy is based on the control of the converter's dc sources values. Software implementation of the conventional PWM and the PWAM control strategies has been applied to a five-level inverter for mitigating selective harmonics. Results show the superiority of the proposed strategy from the THD point of view along with a reduction in the inverter power dissipation.