• Title/Summary/Keyword: power breakdown

Search Result 918, Processing Time 0.028 seconds

Diamond Schottky Barrier Diodes With Field Plate (필드 플레이트가 설계된 다이아몬드 쇼트키 장벽 다이오드)

  • Chang, Hae Nyung;Kang, Dong-Won;Ha, Min-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.659-665
    • /
    • 2017
  • Power semiconductor devices required the low on-resistance and high breakdown voltage. Wide band-gap materials opened a new technology of the power devices which promised a thin drift layer at an identical breakdown voltage. The diamond had the wide band-gap of 5.5 eV which induced the low power loss, high breakdown capability, low intrinsic carrier generation, and high operation temperature. We investigated the p-type pseudo-vertical diamond Schottky barrier diodes using a numerical simulation. The impact ionization rate was material to calculating the breakdown voltage. We revised the impact ionization rate of the diamond for adjusting the parallel-plane breakdown field at 10 MV/cm. Effects of the field plate on the breakdown voltage was also analyzed. A conventional diamond Schottky barrier diode without field plate exhibited the high forward current of 0.52 A/mm and low on-resistance of $1.71{\Omega}-mm$ at the forward voltage of 2 V. The simulated breakdown field of the conventional device was 13.3 MV/cm. The breakdown voltage of the conventional device and proposed devices with the $SiO_2$ passivation layer, anode field plate (AFP), and cathode field plate (CFP) was 680, 810, 810, and 1020 V, respectively. The AFP cannot alleviate the concentration of the electric field at the cathode edge. The CFP increased the breakdown voltage with evidences of the electric field and potential. However, we should consider the dielectric breakdown because the ideal breakdown field of the diamond is higher than that of the $SiO_2$, which is widely used as the passivation layer. The real breakdown voltage of the device with CFP decreased from 1020 to 565 V due to the dielectric breakdown.

Comparative Study of DC Breakdown and Space Charge Characteristics of Insulation Paper Impregnated with Natural Ester and Mineral Oil

  • Hao, Jian;Zou, Run-Hao;Liao, Rui-Jin;Yang, Li-Jun;Liao, Qiang;Zhu, Meng-Zhao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1682-1691
    • /
    • 2018
  • Natural ester is a suitable substitute for mineral oil and has been widely used in AC transformer in many countries. In order to further application of natural ester in direct current (DC) equipment, it is needed to investigate its long term insulation property under DC condition. In this paper, a thermal ageing experiment was conducted for both mineral oil-paper and natural ester-paper insulation. The DC breakdown and space charge characteristics of insulation paper impregnated with natural ester and mineral oil was compared. Results show that the resistivity of the paper immersed in natural ester and mineral oil both increase as the ageing goes on. While insulation paper impregnated with natural ester has higher resistivity and DC breakdown voltage than the paper impregnated with mineral oil. The DC breakdown voltage for the oil impregnated insulation paper being DC pre-stressing is higher than that without pre-stressing. The average DC breakdown field strength difference between the test with pre-stressing and without pre-stressing clearly shows that there is an apparent enhancement effect for the homo-charge injection on the DC breakdown.

Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber (에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

Breakdown and On-state characteristics of the Multi-RESURF SOI LDMOSFET (Epi층의 농도 및 두께 변화에 따른 Multi-RESURF SOI LDMOSFET의 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;Seo, Kil-Su;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1578-1580
    • /
    • 2002
  • The breakdown and on-state characteristics of the multi-RESURF SOI LDMOSFET is presented. P-/n-epi layer thickness and doping concentration is varied from $2{\mu}m{\sim}5{\mu}m$ and $1{\times}10^{15}/cm^3{\sim}9{\times}10^{15}/cm^3$ to obtain optimum breakdown voltage and on-resistance. The breakdown and on-state characteristics of the device is verified by two-dimensional process simulator ATHENA and device simulator ATLAS.

  • PDF

A Basic Study on a New Type Particulate Emission Control Means of a Power Station Using a Micro-Gap and a Pulse Discharge (Micro-Airgap Discharge Phenomena) (초미소간격(超微小間隔)과 극단(極端)펄스방전(放電)을 이용(利用)한 미연소탄소립자(未燃燒炭素粒子) 소각제거기술(燒却除去技術) 개발기초연구(開發基礎硏究)(I) (초미소간격(超微小間隔)의 방전현상(放電現象)))

  • Moon, Jae-Duk;Shin, Soo-Youn
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.605-608
    • /
    • 1993
  • Breakdown characteristics of a small rod-to-rod microairgap has been studied for obtain an optimum breakdown voltage and an airgap spacing to be used as an emission control means by the electrical arc-burning unburnt carbon particulates exhausted from a power station burner. It is found that the breakdown voltage at the rod-to-rod airgap spacing in the rang of $1{\sim}100{\mu}m$ decreased with decrease in the rod-to-rod airgap spacing. And there were no minimum breakdown voltage on a $V_b$-Pd characteristics which is known as the minimum voltage in Paschen's law in air atmosphere. Breakdown voltages of the airgap at the constant airgap spacing were $V_{b-dc}>V_{b-ac}>V_{b-pulse}$, and it was lowest for the pulse voltage applied. As a result, it is found that a pulse power was one of effective power compared with dc or ac to be used as such an unburnt carbon particulate emission control means and the airgap spacing became to several tens ${\mu}m$, then the breakdown voltages were down to several handreds voltages.

  • PDF

Temperature Dependent Breakdown Voltage and On-resistance of Si Power MOSFETs (실리콘 전력 MOSFET의 온도에 따른 항복전압 및 On 저항)

  • Park, Il-Yong;Choe, Yeon-Ik;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.4
    • /
    • pp.246-248
    • /
    • 2000
  • Closed-form expressions for the temperature dependent breakdown voltage and the on-resistance of the Si power MOSFETs were derived by employing effective temperature dependent ionization coefficient for electrons and holes. The breakdown voltage increases by 20% and the on-resistance increases 2 times when the temperature increases from 300 K to 423 K. The analytic results normalized to the values at 300 K show good agreement with the experimental data of Motorola within 3.5% and 7% for the breakdown voltage and the on-resistance, respectively.

  • PDF

The Electrical Breakdown Characteristics of Broken Toughened Glass Stem Insulator (장간유리애자 파손시 절연파괴 특성)

  • Jung, Jong-Wook;Jung, Jin-Soo;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1398-1406
    • /
    • 2008
  • This paper describes the electrical breakdown characteristics of broken toughened glass stem insulators by comparing with those of sound ones. The broken toughened glass stem insulators were taken from the electric railway field. According to the international standards, the sound and broken toughened glass stem insulators were tested in electrical strength. In the test, the power frequency voltage and the impulse voltage with a standard waveform were applied to the insulators. The power frequency voltage tests were carried out under both dry and wet condition and the impulse voltage tests under only dry condition. The acquired results were compared one another and discussed in electrical breakdown characteristic by analyzing the flashover progress pictures. As a result, the electrical strength of the broken toughened glass insulators was acquired and the processes of the surface breakdown on the toughened glass insulators were confirmed.

The Estimation of the Dielectric Strength Decrease of the Solid-solid Interfaces by using the Applied Voltage to Breakdown Time Characteristics

  • Shin, Cheol-Gi;Bae, Duck-Kweon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.278-282
    • /
    • 2007
  • In the complex insulation system that is used in extra high voltage(EHV) devices, according to the trend for electric power equipment of high capacity and reduction of its size, macro interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. In this paper, the dielectric strength decrease of the macro interfaces between epoxy and ethylene propylene diene terpolymer(EPDM) was estimated by using the applied voltage to breakdown time characteristics. Firstly, the AC short time dielectric strength of specimens was measured at room temperature. Then, the breakdown time was measured under the applied constant voltage which is 70% of short time breakdown voltage. With these processes, the life exponent n was determined by inverse power law, and the long time breakdown voltage can be evaluated. The best condition of the interface was LOS(low viscosity(350 cSt) silicone oil spread specimen). When 30 years last on the specimens, the breakdown voltage was estimated 44% of the short time breakdown voltage.

Analysis of Electrical Characteristics of Shield Gate Power MOSFET for Low on Resistance (차폐형 게이트 구조를 갖는 전력 MOSFET의 전기적 특성 분석에 관한 연구)

  • Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • This research was about shielded trench gate power MOSFET for low voltage and high speed. We used T-CAD tool and carried out process and device simulation for exracting design and process parameters. The exracted parameters was used to design shieled and conventional trench gate power MOSFET. And The electrical characteristics of shieled and conventional trench gate power MOSFET were compared and analyzed for their power device applications. As a result of analyzing electrical characteristics, the recorded breakdown voltages of both devices were around 120 V. The electric distributions of shielded and conventional trench gate power MOSFET was different. But due to the low voltage level, the breakdown voltage was almost same. And the other hand, the threshold voltage characteristics of shielded trench gate power MOSFET was superior to convention trench gate power MOSFET. In terms of on resistance characteristics, we obtained optimal oxied thickness of $3{\mu}m$.

Experimental Studies on the Motion and Discharge Behavior of Free Conducting Wire Particle in DC GIL

  • Wang, Jian;Wang, Zhiyuan;Ni, Xiaoru;Liu, Sihua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.858-864
    • /
    • 2017
  • This study aims to restrain free conducting wire-type particles which are commonly and dangerously existing within DC gas-insulated transmission lines. A realistic platform of a coaxial cylindrical electrode was established by using a high-speed camera and a partial discharge (PD) monitor to observe the motion, PD, and breakdown of these particles. The probabilities of standing or bouncing, which can be affected by the length of the particles, were also quantitatively examined. The corona images of the particles were recorded, and particle-triggered PD signals were monitored and extracted. Breakdown images were also obtained. The air-gap breakdown with the particles was subjected to mechanism analysis on the basis of stream theory. Results reveal that the lifting voltage of the wire particles is almost irrelevant to their length but is proportional to the square root of their radius. Short particles correspond to high bouncing probability. The intensity and frequency of PD and the micro-discharge gap increase as the length of the particles increases. The breakdown voltage decreases as the length of the particles decreases.