• 제목/요약/키워드: power automorphism

검색결과 6건 처리시간 0.019초

FINITE GROUPS WITH A CYCLIC NORM QUOTIENT

  • Wang, Junxin
    • 대한수학회보
    • /
    • 제53권2호
    • /
    • pp.479-486
    • /
    • 2016
  • The norm N(G) of a group G is the intersection of the normalizers of all the subgroups of G. In this paper, the structure of finite groups with a cyclic norm quotient is determined. As an application of the result, an interesting characteristic of cyclic groups is given, which asserts that a finite group G is cyclic if and only if Aut(G)/P(G) is cyclic, where P(G) is the power automorphism group of G.

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.

NORMAL EDGE-TRANSITIVE CIRCULANT GRAPHS

  • Sim, Hyo-Seob;Kim, Young-Won
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.317-324
    • /
    • 2001
  • A Cayley graph of a finite group G is called normal edge-transitive if its automorphism group has a subgroup which both normalized G and acts transitively on edges. In this paper, we consider Cayley graphs of finite cyclic groups, namely, finite circulant graphs. We characterize the normal edge-transitive circulant graphs and determine the normal edge-transitive circulant graphs of prime power order in terms of lexicographic products.

  • PDF

On Quasi-Baer and p.q.-Baer Modules

  • Basser, Muhittin;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • 제49권2호
    • /
    • pp.255-263
    • /
    • 2009
  • For an endomorphism ${\alpha}$ of R, in [1], a module $M_R$ is called ${\alpha}$-compatible if, for any $m{\in}M$ and $a{\in}R$, ma = 0 iff $m{\alpha}(a)$ = 0, which are a generalization of ${\alpha}$-reduced modules. We study on the relationship between the quasi-Baerness and p.q.-Baer property of a module MR and those of the polynomial extensions (including formal skew power series, skew Laurent polynomials and skew Laurent series). As a consequence we obtain a generalization of [2] and some results in [9]. In particular, we show: for an ${\alpha}$-compatible module $M_R$ (1) $M_R$ is p.q.-Baer module iff $M[x;{\alpha}]_{R[x;{\alpha}]}$ is p.q.-Baer module. (2) for an automorphism ${\alpha}$ of R, $M_R$ is p.q.-Baer module iff $M[x,x^{-1};{\alpha}]_{R[x,x^{-1};{\alpha}]}$ is p.q.-Baer module.

DISTINGUISHING NUMBER AND DISTINGUISHING INDEX OF STRONG PRODUCT OF TWO GRAPHS

  • Alikhani, Saeid;Soltani, Samaneh
    • 호남수학학술지
    • /
    • 제42권4호
    • /
    • pp.645-651
    • /
    • 2020
  • The distinguishing number (index) D(G) (D'(G)) of a graph G is the least integer d such that G has an vertex labeling (edge labeling) with d labels that is preserved only by a trivial automorphism. The strong product G ☒ H of two graphs G and H is the graph with vertex set V (G) × V (H) and edge set {{(x1, x2),(y1, y2)}|xiyi ∈ E(Gi) or xi = yi for each 1 ≤ i ≤ 2.}. In this paper we study the distinguishing number and the distinguishing index of strong product of two graphs. We prove that for every k ≥ 2, the k-th strong power of a connected S-thin graph G has distinguishing index equal two.