• Title/Summary/Keyword: power amplifier

Search Result 1,857, Processing Time 0.03 seconds

Design and Fabrication of Wide Electrical Tuning Range DRO Using Open-Loop Method (개루프 방법에 의한 확장된 전기적주파수조정범위를 갖는 유전체공진기발진기의 설계 및 제작)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yang, Seong-Sik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.570-579
    • /
    • 2009
  • In this paper, we presented a Vt-DRO with a wide electrical frequency tuning range, using open-loop gain method. The Vt-DRO was composed of 3-stages, resonator, amplifier and phase shifter. In order to satisfy an oscillation condition, we determined magnitude and phase of each stage. The measured S-parameter of cascaded 3-stages shows open-loop oscillation condition. Also, using measured open loop group delay, we derived the relation for electrical frequency tuning range. The Vt-DRO was implemented by connecting the input and the output of the designed open-loop and resulted in closed-loop. As a results, tuning-range of Vt-DRO is 82 MHz, which is close to the predicted results for tuning voltage 0${\sim}$10 V and shows linear frequency tuning at the center frequency of 5.3 GHz. The phase noise is -104 ${\pm}$1 dBc/Hz at 100 kHz offset frequency and power is 5.86${\pm}$1 dBm respectively.

Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes (InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교)

  • Jung, Kyung-Wuk;Kim, Kwang-Woong;Ryu, Sung-Pil;Cho, Nam-Ki;Park, Sung-Jun;Song, Jin-Dong;Choi, Won-Jun;Lee, Jung-Il;Yang, Hae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • We have investigated the lasing characteristics of the InGaAs quantum dot laser diode (QD-LD) and InGaAs quantum well laser diode (QW-LD) operated at the 980 nm wavelength range. The 980-nm lasers are used as a pumping source for a erbium-doped fiber amplifier (EDFA) and it shows high efficiency in long-haul optical fiber network. We have compared the threshold current density, the characteristic temperature, the optical power and the internal efficiency of QD-LD and QW-LD under a pulsed current condition. The QD-LD shows superior performances to the QW-LD. Further optimization of a LD structure is expected to the superior performances of a QD-LD.

Elemental Analysis by Neutron Induced Nuclear Reaction - Prompt Gamma Neutron Activation Analysis for Chemical Measurement - (중성자 핵반응을 이용한 원소 검출기술 - 즉발감마선 중성자 방사화분석법을 이용한 검출기술 -)

  • Song, Byung Chul;Park, Yong Joon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.1041-1051
    • /
    • 2003
  • Neutron induced prompt gamma activation analysis (PGAA) offers a nondestructive, sensitive and relatively rapid method for the determination of trace and major elements and is proven to be convenient for online analysis of minerals, metals, coal, cement, petrochemical, coating, paper as well as many other materials and products. The technique has found many uses in medicine, industry, research, security and the detection of contraband items. This report reviews the present status and future trends of the PGAA techniques. Requirements for the system are neutron source, high resolution HPGe detectors with a high-voltage power supply, an amplifier, analog-to-digital converter, and a multichannel analyzer for the detection and measurement of prompt ${\gamma}$-ray emit form the neutron capture elements. Introducing a ${\gamma}$-${\gamma}$ coincidence system also improves the quality of the ${\gamma}$-ray spectrum by suppressing the background created from the Compton scattering of high energy prompt ${\gamma}$-rays. A PGAA system using a $^{252}Cf$ neutron source is currently under construction for the on-line measurement of several elements in aqueous samples at KAERI. The system can be applied for the detection of chemical weapons and explosives as well as various narcotics.

Development of Surface Myoelectric Sensor for Myoelectric Hand Prosthesis (근전의수용 소형 표면 근전위 센서의 개발)

  • Choi, Gi-Won;Sung, So-Young;Moon, Inhyuk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.67-76
    • /
    • 2005
  • This paper proposes a compact-sized surface myoelectric sensor for the myoelectric hand prosthesis. To fit the surface myoelectric sensor in the socket for the myoelectric hand prosthesis, the sensor should be a compact size. The surface myoelectric sensor is. composed of a skin interface and a single processing circuit that are mounted on a single package. The skin interface has one reference and two input electrodes, and the reference electrode is located in the center of two input electrodes. In this paper we propose two types of sensors with the circle- and bar-shaped reference electrode, but all input electrodes are the bar-shaped. The metal material of the electrodes is the stainless steel (SUS440) that endures sweat and wet conditions. Considering the conduction velocity and the median frequency of the myoelectric signal, we select the inter-electrode distance (IED) between two input electrodes as 18mm, 20mm, and 22 mm. The signal processing circuit consists of a differential amplifier with a band pass filter, a band rejection filter for rejecting 60Hz power-line noise, amplifiers, and a mean absolute value circuit. We evaluate the proposed sensor from the output characteristics according to the IED and the shape of the reference electrode. From the experimental results we show the surface myoelectric sensor with the 18mm IED and the bar-shaped reference electrode is suitable for the myoelectric hand prosthesis.

Analysis and Measurement of the Magnetic Fields Cause by Operation of Electromotive Installations (전동력설비의 운전에 의해 발생되는 자계의 측정과 해석)

  • 이복희;길경석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.2
    • /
    • pp.58-67
    • /
    • 1995
  • The paper describes the variation of magnetic fields caused by the operation of induction motors. The measuring system consists of the self-integrating magnetic field sensor, amplifier, and active integrator. From the calibration experiments, the frequency bandwidth of the magnetic field measuring system ranges from 20[Hz] to 300[kHz] and sensitivity is 0.234(mV/$\mu\textrm{T}$]. The magnetic fields generated under steady state and starting operations of duction motor are recorded by the proposed measuring system, and the fast Fourier transformation(FFT) of the measured data is performed to analyze the harmonic components. A single pulsed magnetic field is strongly caused by direct starting the induction motor, and its peak value is greater than 5 times as compared with the steady state value. The long transient duration and high intensity originates from the large inductance and dynamic characteristic of the induction motor, During the steady state operation of induction motor, subharmonics of magnetic field components, which depend on the pole number of induction motor, are observed. The lower order power-line harmonics can be inferred from the voltage flicker and current ripple which are derived from the torque fluctuation of induction motor. In the case of the induction motor drived by inverter, the harmonics of magnetic field are much more than those caused by direct starting method and are found generally to increase with decreasing the driving frequency.

  • PDF

Three Level Buck Converter Utilizing Multi-bit Flying Capacitor Voltage Control (멀티비트 플라잉 커패시터의 전압제어를 이용한 3-레벨 벅 변환기)

  • So, Jin-Woo;Yoon, Kwang-Sub
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1006-1011
    • /
    • 2018
  • This paper proposes a three level buck converter utilizing multi-bit flying capacitor voltage control. The conventional three-level buck converter can not control the flying capacitor voltage, so that the operation is unstable or the circuit for controlling the flying capacitor voltage can not be applied to the PWM mode. Also when the load current is increased, an error occurs in the inductor voltage. The proposed structure can control the flying capacitor voltage in PWM mode by using differential difference amplifier and common mode feedback circuit. In addition, this paper proposes a 3bit flying capacitor voltage control circuit to optimize the operation of the three level buck converter depending on the load current, and a triangular wave generation circuit using the schmitt trigger circuit. The proposed 3-level buck converter is designed in $0.18{\mu}m$ CMOS process and has an input voltage range of 2.7V~3.6V and an output voltage range of 0.7V~2.4V. The operating frequency is 2MHz, the load current range is 30mA to 500mA, and the output voltage ripple is measured up to 32.5mV. The measurement results show a maximum power conversion efficiency of 85% at a load current of 130 mA.

A 1.1V 12b 100MS/s 0.43㎟ ADC based on a low-voltage gain-boosting amplifier in a 45nm CMOS technology (45nm CMOS 공정기술에 최적화된 저전압용 이득-부스팅 증폭기 기반의 1.1V 12b 100MS/s 0.43㎟ ADC)

  • An, Tai-Ji;Park, Jun-Sang;Roh, Ji-Hyun;Lee, Mun-Kyo;Nah, Sun-Phil;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.122-130
    • /
    • 2013
  • This work proposes a 12b 100MS/s 45nm CMOS four-step pipeline ADC for high-speed digital communication systems requiring high resolution, low power, and small size. The input SHA employs a gate-bootstrapping circuit to sample wide-band input signals with an accuracy of 12 bits or more. The input SHA and MDACs adopt two-stage op-amps with a gain-boosting technique to achieve the required DC gain and high signal swing range. In addition, cascode and Miller frequency-compensation techniques are selectively used for wide bandwidth and stable signal settling. The cascode current mirror minimizes current mismatch by channel length modulation and supply variation. The finger width of current mirrors and amplifiers is laid out in the same size to reduce device mismatch. The proposed supply- and temperature-insensitive current and voltage references are implemented on chip with optional off-chip reference voltages for various system applications. The prototype ADC in a 45nm CMOS demonstrates the measured DNL and INL within 0.88LSB and 1.46LSB, respectively. The ADC shows a maximum SNDR of 61.0dB and a maximum SFDR of 74.9dB at 100MS/s, respectively. The ADC with an active die area of $0.43mm^2$ consumes 29.8mW at 100MS/s and a 1.1V supply.