• Title/Summary/Keyword: powder size effect

Search Result 764, Processing Time 0.023 seconds

Effect of Na Substitution for the Ca Site in the Bi$_2$Sr$_2$Ca$_{1-x}$Na$_x$Cu$_2$O$_{8+y}$ Superconductors (Bi$_2$Sr$_2$Ca$_{1-x}$Na$_x$Cu$_2$O$_{8+y}$ 산화물 고온초전도체의 Ca 위치에 Na 치환 효과)

  • 이민수;송승용;이종용;송기영;최봉수
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1007-1013
    • /
    • 1998
  • The samples of Bi2Sr2Ca1-xNaxCu2O8+y with various carrier concentration were synthesized by substituting Na for Ca ion. The superconducting properties hall coefficients and X-ray powder diffraction were measur-ed the sampled. Single phase samples were obtained for 0$\leq$x<0.3 of Bi2Sr2Ca1-xNaxCu2O8+y In the single phase the critical temperature. {{{{ { T}_{c } }} and carrier concentration increase with the increase of Na concentration pass through a maximum and then decreases. In the range of x$\geq$0.7 to the Na doped samples however we observed the metal-semiconductor transition. The c-axis seemed to decrease and a and b-axes increase with increasing Na concentration in the single phase. Decreasing of c-axis while increasing x is due to the smaller size of {{{{ {Na}^{+1 } }} ions to the {{{{ { Ca}^{+2 } }} ions. In the range of x>0.3 however the trend becomes ambiguous due to the inclusion of the 10K phase and impurity phase.

  • PDF

Effect of Powder Synthesis Method on the Microstructure of Oxide Dispersion Strengthened Fe-Cr-Al Based Alloys (Fe-Cr-Al 기 산화물 분산강화 합금의 미세조직에 미치는 분말제조 공정 영향)

  • Park, Sung Hyun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.27 no.9
    • /
    • pp.507-511
    • /
    • 2017
  • An optimum route to fabricate oxide dispersion strengthened ferritic superalloy with desired microstructure was investigated. Two methods of high energy ball milling or polymeric additive solution route for developing a uniform dispersion of $Y_2O_3$ particles in Fe-Cr-Al-Ti alloy powders were compared on the basis of the resulting microstructures. Microstructural observation revealed that the crystalline size of Fe decreased with increases in milling time, to values of about 15-20 nm, and that an FeCr alloy phase was formed. SEM and TEM analyses of the alloy powders fabricated by solution route using yttrium nitrate and polyvinyl alcohol showed that the nano-sized Y-oxide particles were well distributed in the Fe based alloy powders. The prepared powders were sintered at 1000 and $1100^{\circ}C$ for 30 min in vacuum. The sintered specimen with heat treatment before spark plasma sintering at $1100^{\circ}C$ showed a more homogeneous microstructure. In the case of sintering at $1100^{\circ}C$, the alloys exhibited densified microstructure and the formation of large reaction phases due to oxidation of Al.

Solid-State Synthesis of Yttirum Oxyfluoride Powders and Their Application to Suspension Plasma Spray Coating (Yttirum Oxyfluoride 원료의 고상합성 및 서스펜션 플라즈마 스프레이 코팅 응용)

  • Park, Sang-Jun;Kim, Hyungsun;Lee, Sung-Min
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.710-715
    • /
    • 2017
  • We synthesized YOF(yttirum oxyfluoride) powders through solid state reactions using $Y_2O_3$ and $YF_3$ as raw materials. The synthesis of crystalline YOF was started at $300^{\circ}C$ and completed at $500^{\circ}C$. The atmosphere during synthesis had a negligible effect on the synthesis of the YOF powder under the investigated temperature range. The particle size distribution of the YOF was nearly identical to that of the mixed $Y_2O_3$ and $YF_3$ powders. When the synthesized YOF powders were used as a raw material for the suspension plasma spray(SPS) coating, the crystalline phases of the coated layer consisted of YOF and $Y_2O_3$, indicating that oxidation or evaporation of YOF powders occurred during the coating process. Based on thermogravimetric analysis, the crystalline formation appeared to be affected by the evaporation of fluoride because of the high vapor pressure of the YOF material.

Synthesis of Tungsten Boride using SHS(Self-propagating High-temperature Synthesis) and Effect of Its Parameters (자전연소 합성법을 이용한 W-B 화합물 합성 및 조건 변수의 영향)

  • Choi, Sang-Hoon;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.249-254
    • /
    • 2014
  • Due to their unique properties, tungsten borides are good candidates for the industrial applications where certain features such as high hardness, chemical inertness, resistance to high temperatures, thermal shock and corrosion. In this study, conditions were investigated for producing tungsten boride powder from tungsten oxide($WO_3$) by self-propagating high-temperature synthesis (SHS) followed by HCl leaching techniques. In the first stage of the study, the exothermicity of the $WO_3$-Mg reaction was investigated by computer simulation. Based on the simulation experimental study was conducted and the SHS products consisting of borides and other compounds were obtained starting with different initial molar ratios of $WO_3$, Mg and $B_2O_3$. It was found that $WO_3$, Mg and $B_2O_3$ reaction system produced high combustion temperature and radical reaction so that diffusion between W and B was not properly occurred. Addition of NaCl and replacement of $B_2O_3$ with B successfully solved the diffusion problem. From the optimum condition tungsten boride($W_2B$ and WB) powders which has 0.1~0.9 um particle size were synthesized.

Analysis of Particle Packing Process by Contact Model in Discrete Element Method (입자 패킹 공정에 대한 접촉모델별 이산요소법 해석)

  • Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.3
    • /
    • pp.59-65
    • /
    • 2019
  • In many industries, particle packing is adopted quite frequently. In the particle packing process, the Discrete Element Method (DEM) can analyze the multi-collision of particles efficiently. Two types of contact models are frequently used for the DEM. One is the linear spring model, which has the fastest calculation time, and the other is the Hertz-Mindlin model, which is the most frequently used contact model employing the DEM. Meanwhile, very tiny particles in the micrometer order are used in modern industries. In the micro length order, surface force is important to decreased particle size. To consider the effect of surface force in this study, we performed a simulation with the Hertz-Mindlin model and added the Johnson-Kendall-Roberts (JKR) theory depicting surface force with surface energy. In addition, three contact models were compared with several parameters. As a result, it was found that the JKR model has larger residual stress than the general contact models because of the pull-off force. We also validated that surface force can influence particle behavior if the particles are small.

The Effect of Rapid Consolidation of Nanostructured MoSi2-SiC Composite on its Mechanical Properties (나노구조 몰리브덴늄실리사이드-실리콘카바이드 복합재료의 급속소결과 기계적 성질)

  • Ko, In-Yong;Chae, Seung-Myoung;Shon, In-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.417-423
    • /
    • 2010
  • A dense nanostructured MoSi$_{2}$-SiC composite was synthesized by a pulsed current activated combustion synthesis method within 2 min of one step from mechanically activated powders of Mo$_{2}$C and Si. Simultaneous combustion synthesis and consolidation were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense MoSi$_{2}$-SiC with a relative density of up to 98% was produced under simultaneous application of an 80 MPa pressure and pulsed current. The average grain size and mechanical properties of the composite were investigated.

Pt Catalysts Prepared via Top-down Electrochemical Approach: Synthesis Methodology and Support Effects

  • Alexandra Kuriganova;Igor Leontyev;Nikolay Leontyev;Nina Smirnova
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.345-352
    • /
    • 2024
  • The synthesis of Pt nanoparticles and catalytically active materials using the electrochemical top-down approach involves dispersing Pt electrodes in an electrolyte solution containing alkali metal cations and support material powder using an alternating pulsed current. Platinum is dispersed to form particles with a predominant crystallographic orientation of Pt(100) and a particle size of approximately 7.6±1.0 nm. The dispersed platinum particles have an insignificant content of PtOx phase (0.25±0.03 wt.%). The average formation rate was 9.7±0.5 mg cm-2 h-1. The nature of the support (carbon material, metal oxide, carbon-metal oxide hybrid) had almost no effect on the formation rate of the Pt nanoparticles as well as their crystallographic properties. Depending on the nature of the support material, Pt-containing catalytic materials obtained by the electrochemical top-down approach showed good functional performance in fuel cell technologies (Pt/C), catalytic oxidation of CO (Pt/Al2O3) and electrochemical oxidation of methanol (Pt/TiO2-C) and ethanol (Pt/SnO2-C).

Effect of Sintering Holding Time and Cooling Rate on the Austenite Stability and Mechanical Properties of Nanocrystalline FeCrC Alloy

  • Gwanghun Kim;Junhyub Jeon;Namhyuk Seo;Seunggyu Choi;Min-Suk Oh;Seung Bae Son;Seok-Jae Lee
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.759-763
    • /
    • 2021
  • The effects of the sintering holding time and cooling rate on the microstructure and mechanical properties of nanocrystalline Fe-Cr-C alloy were investigated. Nanocrystalline Fe-1.5Cr-1C (wt.%) alloy was fabricated by mechanical alloying and spark plasma sintering. Different process conditions were applied to fabricate the sintered samples. The phase fraction and grain size were measured using X-ray powder diffraction and confirmed by electron backscatter diffraction. The stability and volume fraction of the austenite phase, which could affect the mechanical properties of the Fe-based alloy, were calculated using an empirical equation. The sample names consist of a number and a letter, which correspond to the holding time and cooling method, respectively. For the 0A, 0W, 10A, and 10W samples, the volume fraction was measured at 5.56, 44.95, 6.15, and 61.44 vol.%. To evaluate the mechanical properties, the hardness of 0A, 0W, 10A, and 10W samples were measured as 44.6, 63.1, 42.5, and 53.8 HRC. These results show that there is a difference in carbon diffusion and solubility depending on the sintering holding time and cooling rate.

Effect of $Ga_2O_3$ and $GeO_2$ Additives on Sintering of Magnesia (Magnesia 소결에 미치는 $Ga_2O_3$$GeO_2$ 첨가의 경향)

  • 이종한;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.99-106
    • /
    • 1983
  • This experiment has been carried out for the purpose of investigating the effect of $Ga_2O_3$ and $GeO_2$ additivies on sintering of magnesium oxide over the temperature range of 130$0^{\circ}C$~150$0^{\circ}C$. The effect of calcining temperature on the bulk densities of fired compacts prepared from this material was observed MgO powder has been obtained by calcining extra reagent grade magnesium carbonate(basic fired) at 90$0^{\circ}C$ for 30 minutes $Ga_2O_3$and GeO2 were added in the ratio of 1, 2, and 3 wt% to MgO and mixed with calcined MgO. The specimens were prepared by compression with pressure of $700kg/cm^2$ than fired at 130$0^{\circ}C$~150$0^{\circ}C$ for 0-5hrs. Sintering behaviour and microstructure of the fired specimens were examined. The optimum calcination temperature of magnesium carbonate was 90$0^{\circ}C$. Densification rates obeyed the equation D=K in t+c. Theoretical density in the case of addition of $Ga_2O_3$ was 23.1 kcal/mole in the case of the additive $GeO_2$ was 14.176kcal/mole. This low value would appear to support a machanism of grain boundatry diffusion The range of average grain size in the case of addition of $Ga_2O_3$ and $GeO_2$ was 21$\mu\textrm{m}$-31$\mu\textrm{m}$.

  • PDF

Effect of Salt on Crystal Growth of Plate-like Alumina Particles by Molten-salt Method (Molten-salt 방법에 의해 합성되는 판상형 알루미나 분말의 입성장 거동에 미치는 Salt의 영향)

  • Kim, Bo Yeon;Lee, Yoon Joo;Shin, Dong-geun;Kim, Soo Ryong;Kwon, Woo Teck;Kim, Younghee;Choi, Duck Kyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.603-608
    • /
    • 2015
  • Alumina powder have been expanded its application in industry and required to control its morphology such as powder size and aspect ratio of single particle. It can be synthesized by molten - salt method which is possible to obtain various shapes of ceramic particles by controlling the growth direction because each crystal face has different growth rate. In this study, various combinations of salts such as NaCl, $Na_2SO_4$, $Na_3PO_4$ and their mixture were used for control the growth of plate like alumina particle from the initial stage of synthesis because salt having different ionic strength can control the growth direction of ceramic particle under its melting condition around $800{\sim}900^{\circ}C$, and growth behavior of plate-like alumina particle with different reaction conditions such as temperature and concentration on the crystal size and shape was studied.