DOI QR코드

DOI QR Code

Pt Catalysts Prepared via Top-down Electrochemical Approach: Synthesis Methodology and Support Effects

  • Received : 2024.02.13
  • Accepted : 2024.04.23
  • Published : 2024.08.31

Abstract

The synthesis of Pt nanoparticles and catalytically active materials using the electrochemical top-down approach involves dispersing Pt electrodes in an electrolyte solution containing alkali metal cations and support material powder using an alternating pulsed current. Platinum is dispersed to form particles with a predominant crystallographic orientation of Pt(100) and a particle size of approximately 7.6±1.0 nm. The dispersed platinum particles have an insignificant content of PtOx phase (0.25±0.03 wt.%). The average formation rate was 9.7±0.5 mg cm-2 h-1. The nature of the support (carbon material, metal oxide, carbon-metal oxide hybrid) had almost no effect on the formation rate of the Pt nanoparticles as well as their crystallographic properties. Depending on the nature of the support material, Pt-containing catalytic materials obtained by the electrochemical top-down approach showed good functional performance in fuel cell technologies (Pt/C), catalytic oxidation of CO (Pt/Al2O3) and electrochemical oxidation of methanol (Pt/TiO2-C) and ethanol (Pt/SnO2-C).

Keywords

Acknowledgement

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project FENN-2024-0002.

References

  1. X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, and G. Wu, Sustainable Energy Fuels, 2020, 4, 15-30. https://doi.org/10.1039/C9SE00460B
  2. S. Mukerjee, J. Appl. Electrochem., 1990, 20, 537-548. https://doi.org/10.1007/BF01008861
  3. K. Kinoshita, J. Electrochem. Soc., 1990, 137, 845-848. https://doi.org/10.1149/1.2086566
  4. P. Inkaew, W. Zhou, and C. Korzeniewski, J. Electroanal. Chem., 2008, 614(1-2), 93-100. https://doi.org/10.1016/j.jelechem.2007.11.028
  5. G. Yang, Q. Zhang, H. Yu, and F. Peng, Particuology, 2021, 58, 169-186. https://doi.org/10.1016/j.partic.2021.01.007
  6. X. Ren, Y. Wang, A. Liu, Z. Zhang, Q. Lv, and B. Liu, J. Mater. Chem. A, 2020, 8, 24284-24306. https://doi.org/10.1039/D0TA08312G
  7. T. Song, F. Gao, S. Guo, Y. Zhang, S. Li, H. You, and Y. Du, Nanoscale, 2021, 13, 3895-3910. https://doi.org/10.1039/D0NR07339C
  8. J. Jang, J. Kim, C. K. Lee, and K. Kwon, J. Electrochem. Sci. Technol., 2023, 14(1), 15-20. https://doi.org/10.33961/jecst.2022.00570
  9. M. J. Ndolomingo, N. Bingwa, and R. Meijboom, J. Mater. Sci., 2020, 55, 6195-6241. https://doi.org/10.1007/s10853-020-04415-x
  10. R. Ferrando, J. Jellinek, and R. L. Johnston, Chem. Rev., 2008, 108(3), 845-910. https://doi.org/10.1021/cr040090g
  11. I. Leontyev, A. Kuriganova, Y. Kudryavtsev, B. Dkhil, and N. Smirnova, Appl. Catal. A General, 2012, 431-432, 120-125. https://doi.org/10.1016/j.apcata.2012.04.025
  12. A. B. Kuriganova, I. N. Leontyev, M. V. Avramenko, N. A. Faddeev, and N. V. Smirnova, Mendeleev Commun., 2022, 32(3), 308-310. https://doi.org/10.1016/j.mencom.2022.05.005
  13. A. B. Kuriganova, C. A. Vlaic, S. Ivanov, D. V. Leontyeva, A. Bund, and N. V. Smirnova, J. Appl. Electrochem., 2016, 46, 527-538. https://doi.org/10.1007/s10800-016-0936-2
  14. A. Ulyankina, M. Avramenko, D. Kusnetsov, K. Firestein, D. Zhigunov, and N. Smirnova, Chemistry Select, 2019, 4(6), 2001-2007. https://doi.org/10.1002/slct.201803367
  15. A. B. Kuriganova, D. V. Leontyeva, and N. V. Smirnova, Russ. Chem. Bull., 2015, 64, 2769-2775. https://doi.org/10.1007/s11172-015-1223-9
  16. D. E. Doronkin, A. B. Kuriganova, I. N. Leontyev, S. Baier, H. Lichtenberg, N. V. Smirnova, and J.-D. Grunwaldt, Catal. Lett., 2016, 146, 452-463. https://doi.org/10.1007/s10562-015-1651-z
  17. A. B. Kuriganova, D. V. Leontyeva, S. Ivanov, A. Bund, and N. V. Smirnova, J. Appl. Electrochem., 2016, 46, 1245-1260. https://doi.org/10.1007/s10800-016-1006-5
  18. A. B. Kuriganova, N. V. Smirnova, I. N. Leontyev, and M. V. Avramenko, ChemChemTech, 2019, 62(9), 53-59. https://doi.org/10.6060/ivkkt.20196209.5945
  19. K. Novikova, A. Kuriganova, I. Leontyev, E. Gerasimova, O. Maslova, A. Rakhmatullin, N. Smirnova, and Y. Dobrovolsky, Electrocatalysis, 2018, 9, 22-30. https://doi.org/10.1007/s12678-017-0416-4
  20. A. B. Kuriganova, I. N. Leontyev, A. S. Alexandrin, O. A. Maslova, A. I. Rakhmatullin, and N. V. Smirnova, Mendeleev Commun., 2017, 27(1), 67-69. https://doi.org/10.1016/j.mencom.2017.01.021
  21. A. B. Kuriganova, I. N. Leontyev, O. A. Maslova, and N. V. Smirnova, Mendeleev Commun., 2018, 28(4), 444-446. https://doi.org/10.1016/j.mencom.2018.07.036
  22. A. Kuriganova, N. Faddeev, M. Gorshenkov, D. Kuznetsov, I. Leontyev, and N. Smirnova, Processes, 2020, 8(8), 947.
  23. A. B. Kuriganova and N. V. Smirnova, Mendeleev Commun., 2014, 24(6), 351-352. https://doi.org/10.1016/j.mencom.2014.11.013
  24. I. N. Leontyev, D. V. Leontyeva, A. B. Kuriganova, Y. V. Popov, O. A. Maslova, N. V. Glebova, A. A. Nechitailov, N. K. Zelenina, A. A. Tomasov, L. Hennet, and N. V. Smirnova, Mendeleev Commun., 2015, 25(6), 468-469. https://doi.org/10.1016/j.mencom.2015.11.024
  25. M. Jarvinen, J. Appl. Crystallography, 1993, 26(4), 525-531. https://doi.org/10.1107/S0021889893001219