• Title/Summary/Keyword: powder size distribution

Search Result 526, Processing Time 0.026 seconds

Study on the Compaction Properties of Fe-Si-Al-Graphite Powder Mixtures (Fe-Si-Al-Graphite 분말 혼합체의 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.300-304
    • /
    • 2020
  • In this paper, a durability study is presented to enhance the mechanical properties of an Fe-Si-Al powder-based magnetic core, through the addition of graphite. The compressive properties of Fe-Si-Al-graphite powder mixtures are explored using discrete element method (DEM), and a powder compaction experiment is performed under identical conditions to verify the reliability of the DEM analysis. Important parameters for powder compaction of Fe-Si-Al-graphite powder mixtures are identified. The compressibility of the powders is observed to increase as the amount of graphite mixture increases and as the size of the graphite powders decreases. In addition, the compaction properties of the Fe-Si-Al-graphite powder mixtures are further explored by analyzing the transmissibility of stress between the top and bottom punches as well as the distribution of the compressive force. The application of graphite powders is confirmed to result in improved stress transmission and compressive force distribution, by 24% and 51%, respectively.

Preparation of SiC-Al alloy Composite by Pressureless Powder Packing Forming Method (분말 충전 성형법을 이용한 SiC-Al Alloy 복합체의 제조)

  • 박정현;송준광;백승수;염강섭;강민수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.343-350
    • /
    • 1997
  • To fabricate the ceramic/metal(SiC/ Al alloy) composite, SiC preform was prepared by Pressureless Powder Packing Forming Method and 6061 Al alloy was infiltrated into the preform. Uniform compact having an average pore size of 10 ${\mu}{\textrm}{m}$ and narrow pore size distribution was prepared. Phenolic resin solution(40 wt%) was penetrated into the SiC compact, and then the compact was preheated at the temperature of 120$0^{\circ}C$. The pore size distribution and the microstructure of the preform were not changed by preheating. An uniform microstructure without any crack in the preform was obtained in SiC-Al alloy composite. The infiltration of 6061. Al alloy into the preform began at the temperature of 130$0^{\circ}C$ and the amount of infiltration increased in proportion to the infiltration temperature and the soaking time. The increasement rate of the infiltration amount decreased after 3 h. As a result of the infiltration at 140$0^{\circ}C$ for 4 h, Al alloy was well distributed in the interparticle channels and the relative density of the composite was above 98%. The strength and the fracture toughness of the composite were 303 MPa and 21.65 MPam1/2, respectively.

  • PDF

Fe-TiC Composite Powders Fabricated by Planetary Ball Mill Processing (유성볼밀공정으로 제조된 Fe-TiC 복합재료 분말)

  • Lee, B.H.;Ahn, K.B.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, B.K.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.208-215
    • /
    • 2015
  • Fe-TiC composite powders were fabricated by planetary ball mill processing. Two kinds of powder mixtures were prepared from the starting materials of (a) (Fe, TiC) powders and (b) (Fe, $TiH_2$, Carbon) powders, respectively. Milling speed (300, 500 and 700 rpm) and time (1, 2, and 3 h) were varied. For (Fe, $TiH_2$, Carbon) powders, an in situ reaction synthesis of TiC after the planetary ball mill processing was added to obtain a homogeneous distribution of ultrafine TiC particulates in Fe matrix. Powder characteristics such as particle size, size distribution, shape, and mixing homogeneity were investigated.

Impact of fine particles on the rheological properties of uranium dioxide powders

  • Madian, A.;Leturia, M.;Ablitzer, C.;Matheron, P.;Bernard-Granger, G.;Saleh, K.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1714-1723
    • /
    • 2020
  • This study aims at characterizing the rheological properties of uranium oxide powders for nuclear fuel pellets manufacturing. The flowability of these powders must be compatible with a reproducible filling of press molds. The particle size distribution is known to have an impact on the rheological properties and fine particles (<100 ㎛) are suspected to have a detrimental effect. In this study, the impact of the particle size distribution on the rheological properties of UO2 powders was quantified, focusing on the influence of fine particles. Two complementary approaches were used. The first approach involved characterizing the powder in a static state: density, compressibility and shear test measurements were used to understand the behavior of the powder when it is transitioned from a static to a dynamic state (i.e., incipient flow conditions). The second approach involved characterizing the behavior of the powder in a dynamic state. Two zones, corresponding to two characteristic behaviors, were demonstrated for both types of measurements. The obtained results showed the amount of fines should be kept below 10 % wt to ensure a robust mold filling operation (i.e., constant mass and production rate).

Influences of Doping Methods on Microstructure and Fracture Toughness of Mo-La Alloys

  • Wang, Lin;Sun, Yuanjun;Luo, Jianhai;Zhu, Yongan;Niu, Pingwen
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1327-1328
    • /
    • 2006
  • Lanthanum oxide was introduced to molybdenum powder by liquid-liquid doping and liquid-solid doping respectively. Mo alloys were prepared by powder metallurgy technology. The size distribution and feature of dopant particles and the fractographs of Mo alloys were investigated by TEM and SEM respectively. The results indicated that liquid-liquid doping method is favorable for refining and dispersing $La_2O_3$ particles uniformly in matrix. Fracture toughness of Mo alloys prepared by liquid-liquid doping showed better results than that of liquid-solid doping. Furthermore, the influences of the size distribution of $La_2O_3$ on properties of Mo alloys was discussed by dislocation pile-up theory.

  • PDF

Infleunce of Nozzle Tip Size on the Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process

  • Yu, Jaekeun;Kim, Donghee
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • In this study, using a tin chloride solution as the raw material, a nano-sized tin oxide powder with an average particle size below 50 nm is generated by a spray pyrolysis process. The properties of the tin oxide powder according to the nozzle tip size are examined. Along with an increase in the nozzle tip size from 1 mm to 5 mm, the generated particles that appear in the shape of droplets maintain an average particle size of 30 nm. When the nozzle tip size increases from 1 mm to 2 mm, the average size of the generated particles is around 80-100 nm, and the ratio of the independent particles with a compact surface structure increases significantly. When the nozzle tip size is at 3 mm, the majority of the generated particles maintain the droplet shape, the average size of the droplet-shaped particles increases remarkably compared to the cases of other nozzle tip sizes, and the particle size distribution also becomes extremely irregular. When the nozzle tip size is at 5 mm, the ratio of droplet-shaped particles decreases significantly and most of the generated particles are independent ones with incompact surface structures. Along with an increase in the nozzle tip size from 1 mm to 3 mm, the XRD peak intensity increases, whereas the specific surface area decreases greatly. When the nozzle tip size increases up to 5 mm, the XRD peak intensity decreases significantly, while the specific surface area increases remarkably.

Effect of Seeding on Microstructural Development of Silicon Nitride Ceramics (질화규소 세라믹스의 미세조직 형성에 미치는 Seed 첨가의 영향)

  • 이창주
    • Journal of Powder Materials
    • /
    • v.5 no.2
    • /
    • pp.133-138
    • /
    • 1998
  • The effect of $\beta$-$Si_3N_4$ seeding on microstructural development of silicon nitride based materials has been investigated. In particular, to observe more distinctly the abnormal grain growth in pressureless sintering, fine $\alpha$-$Si_3N_4$(mean particle size: 0.26 ${\mu}m$) powder classified by sedimentation method was used. It was possible to prepare silicon nitride with abnormally grown grains under low nitrogen pressure of 1 atm thanks to the heterogeneous nucleation on $Si_3N_4$ seed particles. The size and morphology of silicon nitride grains were strongly influenced by the presence of $\beta$-$Si_3N_4$ seed and overall chemical composition. For specimens with initially low $\beta$-content, the large grains grew without a significant impingement by other large grains. On the contrary, for specimens with initially high $\beta$-content, steric hindrance was effective. The resulting microstructure was less inhomogeneous and characterized by unimodal grain size distribution.

  • PDF

Manufacture of Sterilizing Media with Shell Powder and It's Application to the Filter of Water Clarifier (패각분말을 이용한 살균성 메디아의 제조 및 정수기용 필터에 대한 응용)

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.15 no.11
    • /
    • pp.1027-1034
    • /
    • 2006
  • Antimicrobial powder was made by exchanging silver ion on calcined oyster shell. On the purpose of application to water clarifier, bail-type media mixed with antimicrobial powder and $0{\sim}30%$ white kaoline were made. The sterilization effect, pore size distribution and zeta potential was tested to indicate the condition for the media of water clarifier. From these tests, it was confirmed that this media have an excellent sterilization power on $G^-\;and\;G^+$ germs. As the concentration of the exchanged silver ion increased, the surface charge density of the anions on the surface of the media also increased. The surface pore size decreased with the concentration of silver ion and 20% more white kaoline ratio. Consequently, mixing ratio of white kaoline would appear to indicate the optimun condition as media have sterilization power.

Effect of Reaction Conditions on the Preparation of Nano-sized Ni Powders inside a Nonionic Polymer

  • Kim, Tea-Wan;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.462-463
    • /
    • 2006
  • Monodispersed and nano-sized Ni powders were synthesized from aqueous nickel sulfate hexahydrate $(NiSO_4{\cdot}6H_2O)$ inside nonionic polymer network by using wet chemical reduction process. The sucrose was used as a nonionic polymer network source. The effect of reaction conditions such as the amount of sucrose and a various reaction temperature, nickel sulfate hexahydrate molarity. The influence of a nonionic polymer network on the particle size of the prepared Ni powders was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle size analysis (PSA). The results showed that the obtained Ni powders were strong by dependent of the reaction conditions. In particular, the Ni powders prepared inside a nonionic polymer network had smooth spherical shape and narrow particle size distribution.

  • PDF