• Title/Summary/Keyword: powder size distribution

Search Result 526, Processing Time 0.033 seconds

Kinetic Study on Preparation of Iron Fine Powders by Hydrogen Reduction of Ferous Chloride Vapor (염화물의 기상환원반응에 의한 미립질 철분말의 생성속도에 관한 연구)

  • Lee, Hwa-Yeong;Kim, Seong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.385-391
    • /
    • 2000
  • A kinetic study on the preparation of iron powder by hydrogen reduction of ferrous chloride vapor has been carried out both experimentally and theoretically. For the preparation of iron powder, ferrous chloride was vaporized and transported to a reaction zone by Ar gas used as carrier. Ferrous chloride vapor and hydrogen were mixed and subject to a reduction reaction at high temperature to produce iron powder and HCI gas. Iron powder was collected with organic solvent at the end of reaction zone and HCI gas was also absorbed in a caustic soda solution to determine the conversion ratio of ferrous chloride. For the development of rate equations, a 1st-order reaction and equilibration of ferrous chloride vapor with Ar gas were assumed. According to the results, the rate constant, k could be expressed as $k=7,879exp(-53,840/RT)\textrm{dm}^3/mole.sec$ and the activation energy was found to be 53.84kJ/mole. From TEM observation, the particle size distribution of iron powder produced was found to be in the range of $0.1~1.0{\mu\textrm{m}}$ which was not significantly influenced by reaction temperature or gas flow rates.

  • PDF

Synthesized and Characterization of high density cathode materials for Lithium Secondary Batteries (리튬이온이차전지용 고밀도 양극활물질의 합성 및 평가)

  • Kwon, Yong-Jin;Choi, Byung-Hyun;Ji, Mi-Jung;Sun, Yang-Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.429-429
    • /
    • 2008
  • Li$[Ni_{1/2}Co_{1/2}]O_2$ powder were synthesized from co-precipitation spherical metal oxide, $[Ni_{1/2}Co_{1/2}](OH)_2$. The preparation of metal hydroxide was significantly dependent on synthetic conditions, such as pH, amount of chelating agent, stirring speed, etc. The optimized condition resulted in $[Ni_{1/2}Co_{1/2}](OH)_2$, of which the particle size distribution was uniform and the particle shape was spherical, as observed by scanning electron microscopy. Calcination of the uniform metal hydroxide with LiOH at higher temperature led to a well-ordered layer-structured Li$[Ni_{1/2}Co_{1/2}]O_2$, as confirmed by X-ray diffraction pattern. Also these materials have ${\alpha}-NaFeO_2$ ($R\bar{3}m$) structure. Due to the homogeneity of the metal hydroxide, $[Ni_{1/2}Co_{1/2}](OH)_2$, the final product, Li$[Ni_{1/2}Co_{1/2}]O_2$, was also significantly uniform, i.e., the average particle size was of about 10 to 15 ${\mu}m$ in diameter and the distribution was relatively narrow. As a result, the corresponding tap-density was also high approximately 2.41 $gcm^{-3}$, of which the value is comparable to that of commercialized $LiCoO_2$.

  • PDF

Suggestion of separation and recollection method of nano particles from suspension by using ultrasonic atomization (초음파 무화효과를 이용한 현탁액으로부터 나노입자의 분리포집법 제안)

  • Kim, Jihyang;Kim, Jungsoon;Yeom, Jiyeong;Ha, Kanglyeol;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.445-451
    • /
    • 2016
  • It is very important to obtain non-agglomerated nano particle state for practical application of nano technology. In order to improve the functionality of products using nano particles, more precise control of particle size distribution is required in their synthesis process. However, synthesized nano particles are agglomerated easily due to physical and chemical reasons, and it then veils unique properties of the nano particles and causes some troubles in their practical application. In this study, a separation method for nano particles from suspension by using the droplets as the separation space was proposed. Using the suspension of 0.002 wt. % with $TiO_2$ powder, the particle size distribution of nano particles in the recollected suspension was measured. From the results, it was confirmed that it is possible to separate and to recollect the nano particles monodispersed by using the suggested method.

Effect of Oyster Shell Addition on the Dissolved Air Flotation and Sedimentation of Bulking Sludge (팽화슬러지의 용존공기부상과 침전에 미치는 굴패각 첨가의 영향)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.82-88
    • /
    • 2007
  • The objective of this study is to examine the effect of the waste oyster shell powder as the addition agent in bulking sludge thickening of paper manufacturing plant using DAF(Dissolved Air Flotation) and gravitational sedimentation. The effect of parameters such as dosage and size distribution of oyster shell were examined. The results showed that the optimum dosage of mixed oyster shell(size range : $\sim250{\mu}m$) was 0.8 g/L. The oyster shell addition of 5.0 g/L in sedimentation process was increased thickening concentration of 3.25 times. When 5.0 g/L of oyster shell was added in DAF process, water content of sludge was decreased from 95.5% to 82.7% in dewatering process using Buchner funnel test device. When size of oyster shell was divided four ranges($\sim53{\mu}m$, $53\sim106{\mu}m$, $106\sim150{\mu}m$, $150\sim250{\mu}m$), optimum size range for the flotation and dewatering was $53\sim106{\mu}m$.

Analysis of the Characteristics of Liquidization Behavior of Sand Ground in Korea Using Repeated Triaxial Compression Test (반복삼축압축시험을 이용한 국내 모래지반의 액상화 거동 특성 비교)

  • Seo, Hyeok;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.493-506
    • /
    • 2021
  • Liquefaction refers to a phenomenon in which excessive pore water pressure occurs when a dynamic load such as an earthquake rapidly acts on a loose sandy soil saturated with soil, and the ground loses effective stress and becomes liquefied. The indoor repeated test for liquefaction evaluation can be confirmed through the repeated triaxial compression test and the repeated shear test. In this regard, this study tried to confirm the liquefaction resistance strength according to the relative density and particle size distribution of sand using the repeated triaxial compression test. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the soil classification, and the liquefaction resistance strength according to the particle size distribution of the sand was confirmed that the liquefaction resistance strength of the SP sample close to SW was significantly higher. In addition, as a result of analyzing 30% of fine powder compared to 0% of fine powder, as the relative density increased to 40~70%, the liquefaction resistance strength decreased by 5~20%, and the domestic weathered soil ground had a fine liquefaction resistance strength compared to Jumunjin standard sand. When the minute was 10%, it was measured to be 30% or more, and when the fine particle was 30%, it was measured to be less than 50%.

Manufacture of paste opaque porcelains using glycols as a solvent and evaluation of their physical properties (글리콜을 용매로 제조한 연고형 불투명 도재의 물성)

  • Kim, Sa-Hak
    • Journal of Technologic Dentistry
    • /
    • v.25 no.1
    • /
    • pp.41-62
    • /
    • 2003
  • In this research, we manufactured the paste opaque porcelains using Propylene Glycol (PG) and Buthylene Glycol (BG) as a solvent, and compared the composition of solvents, the coefficient of thermal expansion, the particle size distribution, the viscosity and bonding strength to metal, and the tone with those of the commercial products(Duceram Plus, Duceram GmbH; VMK 95, Vita Co.; Noritake EX-3, Noritake Co.)used in the clinical field. The results of the research were as follows: 1. The result of solvent analysis indicated that the solvents included in the paste opaque porcelains of the control group were mainly composed of Glycols. 2. From the Coefficient of thermal expansion measurement, we drew out the following results; testing group: $14.0\times10^{-6}/^{\circ}C$, Duceram Plus: $13.9\times10^{-6}/^{\circ}C$, VMK 95: $14.3\times10^{-6}/^{\circ}C$, and Noritake EX-3: $13.3\times10^{-6}/^{\circ}C$. 3. Seen from the result of particle size distribution measurement, the experimental group was similar to the control group in 1$\mu m$ below, but the experimental group marked the highest distribution of 61% in the case of between 1$\mu m$ and 5$\mu m$. Between 5$\mu m$ and 10$\mu m$, they showed relatively similar distribution, and Noritake EX-3 was turned out the highest distribution of 29% in 10$\mu m$ above. 4. From the result of viscosity measurement, Duceram plus showed the highest viscosity throughout all the measurements followed by Noritake Ex-3, experimental group and VMK 95 in decreasing order. 5. The result of bonding strength measurement was EX 35.53 $\beta\acute{A}$, DU 40.88 $\beta\acute{A}$, VM 39.43 $\beta\acute{A}$, and NO 35.39 $\beta\acute{A}$, and no significant difference was found between the experimental group and the control groups(P>0.05). 6. The measurement of the tone indicated that the $L^*$ value of the experimental group was 86.89 0.63 in average, which is higher than the control group in its brightness. In the case of the $a^*$ value, Duceram Plus, VMK 95 and EX-3 showed positive value, whereas the testing group was turned out negative value. In $b^*$ value, Duceram Plus proved the highest. From the results of this research, the paste opaque porcelains using Propylene Glycol (PG) and Buthylene Glycol (BG) as a solvent did not make differences from the commercial products that are actually used in the clinical fields. Therefore, it is possible to utilize Propylene Glycol (PG) and Buthylene Glycol (BG) for the paste opaque porcelains of P.F.M crown. It is also recommended that further researches concerning the compositions and forms of powder, the types of organic solvent components and the ratio of mixture proceeded in order to improve the level of productivity in the future.

  • PDF

Preparation and Electromagnetic Properties of Ni-Zn Ferrite by Wet Method (습식합성법을 이용한 Ni-Zn Ferrite의 제조 및 전자기적 특성연구)

  • Jung, Goo-Eun;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • Ni-Zn ferrite powder was synthesized from metal nitrates, Fe(N $O_3$)$_3$$.$9 $H_2$O, Ni(N $O_3$)$_2$$.$6 $H_2$O, Zn(N $O_3$)$_2$$.$6 $H_2$O by wet direct process to make high permeability material. The composition of the ferrite powder is (N $i_{0.284}$F $e_{0.053}$Z $n_{0.663}$)F $e_2$ $O_4$. Ni-Zn ferrite powder is compounded by precipitating metal nitrates with NaOH in vessel at 90$^{\circ}C$ synthetic temperature for 8 hours. Calcination temperature and sintering temperature were 700$^{\circ}C$ and 1150$^{\circ}C$-1250$^{\circ}C$ respectively for 2 hours. The same compound powder was extracted from metal oxide by wet ballmilling. We compared the properties of powder and the electromagnetic characteristics of the sintered cores obtained from the two different processes. Wet direct process produces smaller particle size with narrower distribution and higher purified ferrite which cores has high permeability and high magnetization.

Extraction of Micro Filler from Bio-waste Material (Bio waste 소재로부터의 마이크로 필러 추출)

  • Nam, Gibeop;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.209-214
    • /
    • 2018
  • This paper explain about the development of environmental friendly, low cost and stable supply material i.e., rice husk and shell were used as micro incorporating bio waste filler. Those were processed by ball mill and analyzed through micro observation by FE-SEM, EDS and particle size distribution. The obtained filler was mixed with epoxy resin for the manufacturing of CFRP composite and study tensile properties. In EDS analysis main contents of rice husk and rice husk ash are C, O and Si. When rice husk was burned C and Si ration were increased. Shell powder has C, O and Ca. It caused $CaCO_3$ from shell. Surface weighted mean of rice husk powder is $6.19{\mu}m$ and volume weighted mean is $14.77{\mu}m$. And it has rod type particles which caused hair and husk structure parts. Surface weighted mean of rice husk ash powder is $1.55{\mu}m$ and volume weighted means is $8.20{\mu}m$. Surface weighted mean of shell powder is $2.53{\mu}m$ and volume weighted mean is $5.79{\mu}m$. The tensile decreased with increasing the content of micro filler in CFRP composites. In case of rice husk, the significant decrement of tensile strength was observed. and in case of shell powder, there is no effect of changes take place in tensile strength.

Effect of Extrusion Temperature on Puffing of White and Red Ginseng (압출성형 온도가 백삼과 홍삼의 팽화에 미치는 영향)

  • Kim, Bong-Su;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.7
    • /
    • pp.1109-1113
    • /
    • 2005
  • The objective of this study was to determine the effect of extrusion temperature on puffing of white and red ginseng powder. The extrusion variables were feed material (red and white ginseng powder) and die temperature $(100\;and\;115^{\circ}C)$. The analyzed characteristics of ginseng extrudates were sectional expansion index, microstructure and rheological properties. Most of biopolymer was highly puffed at higher extrusion temperature, but the cross-sectional expansion of white and red ginseng powder was higher at 1000e and longitudinal expansion seems to higher at $115^{\circ}C$. White and red ginseng powder were puffed inconsistently and discontinuously at $115^{\circ}C$. The scanning electron microphotograph of extruded white ginseng was uniform air cell distribution at 100oe, but pore size increased at $115^{\circ}C$ and had fine uniformity due to pore explosion. White ginseng and its extrudate were pseudoplastic. Intrinsic viscosity was lower as a result of increased die temperature. The cross-sectional expansion seems to be inconsistent and decreased due to decrease in melt viscosity at $115^{\circ}C$.

Analysis for Water Vapour Adsorption and Desorption Performance of Waste Paper-Mulberry according to Particle Size Control (폐닥나무의 입도제어에 따른 흡·방습 특성 분석)

  • Jo, Ki-Sic;Kim, Tae-Yeon;Seo, Sung-Kwan;Lee, Oh-Kyu;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.29 no.2
    • /
    • pp.8-17
    • /
    • 2020
  • In this study, adsorption and desorption characteristics of pulverized waste paper-mulberry pellet and bast fiber were measured to confirm the applicability to humidity control products. Paper-mulberry powder was classified by 710-355㎛, 355-100㎛, 100-45㎛ and less than 45㎛ and used in experiment. Specific surface area increased from 1.02㎡/g to 1.35㎡/g as the particle size decreased from 710㎛ to under 45㎛. Adsorption and desorption performance decreased in the order of 355-100㎛, 710-355㎛, 100-45㎛, less than 45㎛ and bast fiber, adsorption content on each particle sizes were 141.1g/㎡, 147.1g/㎡, 135.7g/㎡, 129.0g/㎡ and desorption content were 117.2g/㎡, 123.6g/㎡, 110.2g/㎡, 93.3g/㎡. As a result, adsorption and desorption performance of paper-mulberry powder were superior to those of the bast fiber and these phenomenon can be considered that it caused by pore distribution in pellet and damage of fiber.