• 제목/요약/키워드: powder of fine

검색결과 1,185건 처리시간 0.029초

Properties of recycled green building materials applied in lightweight aggregate concrete

  • Wang, Her-Yung;Hsiao, Darn-Horng;Wang, Shi-Yang
    • Computers and Concrete
    • /
    • 제10권2호
    • /
    • pp.95-104
    • /
    • 2012
  • This study uses recycled green building materials based on a Taiwan-made recycled mineral admixture (including fly ash, slag, glass sand and rubber powder) as replacements for fine aggregates in concrete and tests the properties of the resulting mixtures. Fine aggregate contents of 5% and 10% were replaced by waste LCD glass sand and waste tire rubber powder, respectively. According to ACI concrete-mixture design, the above materials were mixed into lightweight aggregate concrete at a constant water-to-binder ratio (W/B = 0.4). Hardening (mechanical), non-destructive and durability tests were then performed at curing ages of 7, 28, 56 and 91 days and the engineering properties were studied. The results of these experiments showed that, although they vary with the type of recycling green building material added, the slumps of these admixtures meet design requirements. Lightweight aggregate yields better hardened properties than normal-weight concrete, indicating that green building materials can be successfully applied in lightweight aggregate concrete, enabling an increase in the use of green building materials, the improved utilization of waste resources, and environmental protection. In addition to representing an important part of a "sustainable cycle of development", green building materials represent a beneficial reutilization of waste resources.

Development of a High-Volume Simultaneous Sampler for Fine and Coarse Particles using Virtual Impactor and Cyclone Techniques

  • Okuda, Tomoaki;Shishido, Daiki;Terui, Yoshihiro;Fujioka, Kentaro;Isobe, Ryoma;Iwaki, Yusuke;Funato, Koji;Inoue, Kozo
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권1호
    • /
    • pp.78-86
    • /
    • 2018
  • Filter-based sampling techniques are the conventional way to collect particulate matter, but particles collected and entangled in the filter fibers are difficult to be removed and thus not suited for the following cell- and animal-based exposure experiments. Collecting aerosol particles in powder form using a cyclone instead of a filter would be a possible way to solve this problem. We developed a hybrid virtual-impactor/cyclone high-volume fine and coarse particle sampler and assessed its performance. The developed system achieved 50% collection efficiency with components having the following aerodynamic cut-off diameters: virtual impactor, $2.4{\mu}m$; fine-particle cyclone, $0.18-0.30{\mu}m$; and coarse-particle cyclone, $0.7{\mu}m$. The virtual impactor used in our set-up had good $PM_{2.5}$ separation performance, comparable to that reported for a conventional real impactor. The newly developed sampler can collect fine and coarse particles simultaneously, in combination with exposure testing with collected fine- and coarse-particulate matter samples, should help researchers to elucidate the mechanism by which airborne particles result in adverse health effect in detail.

기계적 합금화 및 스파크 플라즈마 소결에 의해 제조된 Al-Fe-X계 합금의 열적 안정성: I. Al-Fe (Thermal Stability of Al-Fe-X Alloy System Prepared by Mechanical Alloying and Spark Plasma Sintering: I. Al-Fe)

  • 이현권;이상우;조경식
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.70-78
    • /
    • 2005
  • Mechanical alloying using high-energy ball mill and subsequent spark plasma sintering (SPS) process was applied to understand mechanical alloying processing of Al-Fe alloy system. The thermal stability of mechanically alloyed Al-Fe alloy was intended to be enhanced by SPS process. Various analytical techniques including particle size analysis, density measurement, micro-Vickers hardness test, SEM, TEM, and X-ray diffractometry were adopted to find optimum processing conditions for mechanical alloying and subsequent SPS and to estimate thermal stability of the prepared alloy. It was found from the treatment of mechanically alloyed Al-8wt.%Fe powder mixture that needle-shaped $Al_3Fe$ precipitates was formed in the Al-Fe matrix, and the alloy compact showed enhanced densification and reached its full density with little loss of its fine microstructure. After heat treatment at $500^{\circC}$, it was also shown that the thermal stability of Al-8wt.%Fe alloy fabricated in the present study was enhanced, which was due to its fine microstructure developed by fast densification of SPS.

Pectolinarin 고함유 곤드레 미세분말의 항산화 및 항비만 활성 (Antioxidant and Anti-Obesity Properties of Pectolinarin-rich Cirsium setidens Nakai Fine Powder)

  • 박성진;김현덕;이윤환
    • 한국식품영양학회지
    • /
    • 제34권1호
    • /
    • pp.69-78
    • /
    • 2021
  • The aim of this study was to evaluate the basic data of Cirsium setidens Nakai fine powder (FPC), which will then be used in the development of functional fooditems. We measures and evaluated the level of pectolinarin content, phenol content, flavonoids content, antioxidants and anti-obesity properties of FPC. Our results from the study showed that the pectolinarin, phenol, and flavonoids contents of FPC measured at 10.95±0.1 5mg/g, 12.92±0.18 mg gallic acid equivalent (GAE)/g and 26.47±0.77 mg rutin equivalent (RE)/g, respectively. The exhibited antioxidant activity of FPC increased significantly depending on the dosage, and additionally. FPC did not show any cytotoxicity up to the dosage level of 500 μg/mL. During adipocyte differentiation, FPC significantly inhibited ROS production and lipid accumulation, compared with the control substance. These results suggest that FPC could be considered a promising resource of natural antioxidants and could serve a variety of health-improving roles in the production of functional food ingredients.

$Mn_3O_4$ 분진의 Al 테르밋 반응용 Al 합금분말의 특성 (The Properties of Aluminium Alloy Powder for Aluminothermy Process with $Mn_3O_4$ Waste Dust)

  • 김윤채;송영준;박영구
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.71-77
    • /
    • 2013
  • 알루미늄 테르밋 반응의 환원제로서 알루미늄 분말은 200 메쉬 이하의 미분이 필요하나, 알루미늄의 높은 인성과 분말 제조비 때문에 경제적으로 용이하지 않다. 그러므로 $Mn_3O_4$ 분진 환원용 알루미늄 미분의 제조 코스트를 낮추기 위해, 알루미늄 합금분말의 제특성이 검토되었다. 망간을 다량 함유한 알루미늄 합금괴는 취성이 큰 금속간 화합물을 함유하고 있기 때문에 쉽게 파쇄할 수 있다. 또 망간은 망간 합금철의 주성분이다. Al-15%Mn 합금분말을 기계적 파쇄법으로 저렴하게 제조할 수 있다. Al 분말 대신에 Al-15%Mn 합금분말을 사용한 테르밋 반응 결과는 환원제로 순 알루미늄 분말을 사용한 경우와 같이 고순도 망간 합금철을 얻을 수 있었다. Al-15%Mn 합금분말를 이용한 $Mn_3O_4$ 분진의 망간 회수율은 알루미늄 분말을 이용한 경우의 약 65% 보다 높은 약 70%의 높은 수준을 보였으며, 이는 비산이 적은 것에 기인한다.

Development of Superior Fe-Si Sintered Magnetic Cores Equivalent to Wrought Si-steels

  • Hamano, Aya;Isihara, Chio;Asaka, Kazuo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.799-800
    • /
    • 2006
  • Wrought Si-steels are generally used for electromagnetic valves, which are needed good response. To date, Hitachi Powdered Metals Co., Ltd. have produced Fe-Si base sintered magnetic material, EU-52, which shows a magnetic flux density of more than 1.25T at 2000A/m and a maximum permeability of more than 3500. However these magnetic properties are lower than that of wrought Si-steels. Because EU-52 has a low density of $7.2Mg/m^3$. For improving the magnetic properties, it is necessary to increase the density of sintered cores. To increase density, a new mixing method of coating fine Si powders on atomized iron powders was developed, for avoiding the Kirkendall effect. As the result, developed P/M Fe-Si magnetic cores shows higher density of $7.38Mg/m^3$, higher magnetic flux density of 1.48T at 2000A/m and higher maximum permeability of 6800.

  • PDF

Powder Preparation by Hydroxide Coprecipitation and Phase Development of Pb0.97La0.02(Zr0.64Sn0.25Ti0.11)O3 Ceramics

  • Lee, Joon-Hyung;Chiang, Yet-Ming
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.260-267
    • /
    • 1998
  • A homogeneous and stoichimetric fine powder of the ferroelectric $Pb_[0.97}La_{0.02}(Zr_{0.64}Sn_{0.25}Ti_{0.11})O_3$ (PLZST) has been prepared by the hydroxide coprecipitation method. Studies on the crystallization behavior of precursor as a function of temperature by X-ray powder diffraction and transmission electron microscopy technique were consistent with the formation of the pyrochlore phase from amorphous, initially at low temperatures around 500~$550^{\circ}C$. Further heat treatment up to $750^{\circ}C$ resulted in development of the perovskite phase with no significant pyrochlore crystallite growth. At intermediate temperatures the precursor yields a fine mixture of pyrochlore and perovskite phases. When the pyrochlore phase was heat teated in air, slight weight increase was observed in the temperature range of 300~$700^{\circ}C$, which is thought to be caused from oxygen absorption. In argon atmosphere, weight increase was not observed. On the other hand, weight loss began to occur near $700^{\circ}C$, with giving off mostly CO2 gas. This implies that the pyrochlore phase seems to be crystallorgraphycally and thermodynamically metastable. An apparent activation energy of 53.9 ㎉/mol was estimated for the pyrochlore-perovskite phase transformation.

  • PDF

재생시멘트 활용에 따른 CO2배출량 저감효과 (CO2 Emissions Reduction by Utilization of Recycled Cement)

  • 권은희;안재철;황종욱;박동천
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.78-79
    • /
    • 2013
  • A policy for recycling waste concrete has been extensively studied, but it is still lacking to recycle and reuse as a cementitious powder, and the property has big different depending on the aggregate rates. In this study, the amount of cement powder according to the internal properties of the aggregate were mixed. From as a result, Concrete Powder to play inside the aggregate composition of the cement composition CaO rigs that causes loss of power and strength reduction due to rising real water cement ratio will affect large.

  • PDF

폐 인듐주석산화물 타겟의 재활용 기술 (Recycling Method of Used Indium Tin Oxide Targets)

  • 이영인;좌용호
    • 한국재료학회지
    • /
    • 제22권4호
    • /
    • pp.174-179
    • /
    • 2012
  • In this study, we demonstrated a simple and eco-friendly method, including mechanical polishing and attrition milling processes, to recycle sputtered indium tin oxide targets to indium tin oxide nanopowders and targets for sputtered transparent conductive films. The utilized indium tin oxide target was first pulverized to a powder of sub- to a few- micrometer size by polishing using a diamond particle coated polishing wheel. The calcination of the crushed indium tin oxide powder was carried out at $1000^{\circ}C$ for 1 h, based on the thermal behavior of the indium tin oxide powder; then, the powders were downsized to nanometer size by attrition milling. The average particle size of the indium tin oxide nanopowder was decreased by increasing attrition milling time and was approximately 30 nm after attrition milling for 15 h. The morphology, chemical composition, and microstructure of the recycled indium tin oxide nanopowder were investigated by FE-SEM, EDX, and TEM. A fully dense indium tin oxide sintered specimen with 97.4% of relative density was fabricated using the recycled indium tin oxide nanopowders under atmospheric pressure at $1500^{\circ}C$ for 4 h. The microstructure, phase, and purity of the indium tin oxide target were examined by FE-SEM, XRD, and ICP-MS.

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF