• 제목/요약/키워드: powder metallurgy applications

검색결과 213건 처리시간 0.02초

슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향 (The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process)

  • 최진호;정은미;박다희;양상선;한유동;윤중열
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

압전나노소재 기반의 플렉서블 에너지 하베스팅 소자 연구동향 (Recent Progress in Flexible Energy Harvesting Devices based on Piezoelectric Nanomaterials)

  • 박귀일
    • 한국분말재료학회지
    • /
    • 제25권3호
    • /
    • pp.263-272
    • /
    • 2018
  • Recent developments in the field of energy harvesting technology that convert ambient energy resources into electricity enable the use of self-powered energy systems in wearable and portable electronic devices without the need for additional external power sources. In particular, piezoelectric-effect-based flexible energy harvesters have drawn much attention because they can guarantee power generation from ubiquitous mechanical and vibrational movements. In response to demand for sustainable, permanent, and remote use of real-life personal electronics, many research groups have investigated flexible piezoelectric energy harvesters (f-PEHs) that employ nanoscaled piezoelectric materials such as nanowires, nanoparticles, nanofibers, and nanotubes. In those attempts, they have proven the feasibility of energy harvesting from tiny periodic mechanical deformations and energy utilization of f-PEH in commercial electronic devices. This review paper provides a brief overview of f-PEH devices based on piezoelectric nanomaterials and summarizes the development history, output performance, and applications.

How to Improve the Ductility of Nanostructured Materials

  • Eckert J.;Duhamel C.;Das J.;Scudino S.;Zhang Z. F.;Kim, K. B.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.340-350
    • /
    • 2006
  • Nanostructured materials exhibit attractive mechanical properties that are often superior to the performance of their coarse-grained counterparts. However, one major drawback is their low ductility, which limits their potential applications. In this paper, different strategies to obtain both high strength and enhanced ductility in nanostructured materials are reported for Ti-base and Zr-base alloys. The first approach consists of designing an in-situ composite microstructure containing ductile bcc or hop dendrites that are homogeneously dispersed in a nanostructured matrix. The second approach is related to refining the eutectic structure of a Ti-Fe-Sn alloy. For all these materials, the microstructure, mechanical properties, deformation and fracture mechanisms will be discussed.

Nanocrystalline Materials-an Overview

  • Suryanarayana, C.
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.233-245
    • /
    • 1996
  • Nanocrystalline materials, with a grain size of typically <100 nm, are a new class of materials with properties vastly different from and often superior to those of the conventional coarse-grained materials. These materials can be synthesized by a number of different techniques and the grain size, morphology, and composition can be controlled by controlling the process parameters. In comparison to the coarse-grained materials, nanocrystalline materials show higher strength and hardness, enhanced diffusivity, improved ductility/toughness, reduced, density, reduced elastic modulus, higher electrical resistivity, increased specific heat, higher coefficient of thermal expansion, lower thermal conductivity, and superior soft and hard magnetic properties. Limited quantities of these materials are presently produced and marketed in the US, Canada, and elsewhere. Applications for these materials are being actively explored. The present article discusses the synthesis, structure, thermal stability, properties, and potential application of nanocrystalline materials.

  • PDF

급속응고기술에 의한 n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ 열간압축제의 열전특성 (Thermoelectric Properties of n-type 90%$Bi_{2}Te_{3}+10% Bi_{2}Se_{3}$ Materials Prepared by Rapid Solidification Process and Hot Pressing)

  • 김익수
    • 한국분말재료학회지
    • /
    • 제3권4호
    • /
    • pp.253-259
    • /
    • 1996
  • The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant ${CdCl}_{2}$ quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous $Bi_2Te_3$, ${Bi}_{2}{Se}_{3}$ solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038$\times$$10^{-3}K^{-4}. The bending strength of the material hot pressed at 50$0^{\circ}C$ was 8.2 kgf/${mm}^2$.

  • PDF

최신 금속복합재료의 연구 개발 동향 및 응용 현황 (Recent Trends and Application Status of the Metal Matrix Composites (MMCs))

  • 김효섭
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.164-173
    • /
    • 2020
  • Metal matrix composites (MMCs), which are a combination of two or more constituents with different physical or chemical properties, are today receiving great attention in various areas, as they have high specific strength, corrosion resistance, fatigue strength, and good tribological properties. This paper presents a research review on the combination of matrix and reinforced materials, fabrication processes, and application status of metal matrix composites. In this paper, we aim to discuss and review the importance of metal composite materials as advanced materials that can be used in various applications such as transportation, defense, sports, and extreme environments. In addition, the applicability and technology development trends in new process technology fields such as additive manufacturing of metal composites will be described.

Synthesis and Characterization of Tungsten Trioxide Films Prepared by a Sol-Gel Method for Electrochromic Applications

  • Kim, Tae-Ho;Nah, Yoon-Chae
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.309-314
    • /
    • 2015
  • Tungsten trioxide thin films are successfully synthesized by a sol-gel method using tungsten hexachloride as precursors. The structural, chemical, and optical properties of the prepared films are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The electrochemical and electrochromic properties of the films before and after heat treatment are also investigated by cyclic voltammetry, chronoamperometry, and in situ transmittance measurement system. Compared to as-prepared films, heat-treated tungsten trioxide thin films exhibit a higher electrochemical reversibility of 0.81 and superior coloration efficiency of $65.7cm^2/C$, which implies that heat treatment at an appropriate temperature is a crucial process in a sol-gel method for having a better electrochromic performance.

Al계 준결정 분말의 제조 및 응용

  • Kim, W. T.;Kim, D.H.;Lee, S.M.;E.Fleury;H.S. Ahn
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2002년도 제3회 최신 분말제품 응용기술 Workshop
    • /
    • pp.133-155
    • /
    • 2002
  • 1. Quasicrystalline powders shows exotic physical and mechanical p properties 2. Applications: structural application: strengthening particles for composites C Coating application: wear resistance, low friction coefficient 3. For thermal spaying: material loss during process should be c considered to control chemical composition of deposit 4. Friction coefficient is strongly dependent on contact geometry F Friction coefficient from pin on plate: 0.1-0.2 Friction coe야icient from flat on plate: about 0.46. 5. Quasicrystalline materials show lower friction coefficient but higher w wear rate than corresponding values of $Cr_20_3$ coated layer. 6. Amorphous coating seems to be promising

  • PDF

Comparative Analyses of Commercial Detonation Nanodiamonds

  • Puzyr, A.P.;Burova, A.E.;Bondar, V.S.;Rhee, C.K.;Rhee, W.H.;Hwang, K.C.
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.297-302
    • /
    • 2011
  • Colloidal stability is one of crucial factors for many applications of nanodiamond. Despite recent development, nanodiamonds available on the market often exhibit a high impurity content, wide size distribution of aggregates and low resistance to sedimentation. In the current study, four commercial nanodiamond powders synthesized by detonation synthesis were surface modified and then separated with respect to the size into six fractions by centrifugation. The fractions were evaluated by zeta potential, particle size distribution and elemental composition. The results showed that the modified nanodiamonds form stable colloidal suspensions without sedimentation for a long time.

고부피분율 SiC분말 예비성형체의 제조공정과 기계적특성 (Fabrication Process and Mechanical Properties of High Volume Fraction SiC Particle Preform)

  • 전경윤
    • 한국분말재료학회지
    • /
    • 제7권1호
    • /
    • pp.27-34
    • /
    • 2000
  • The fabrication process and mechanical properties of SiC particle prefrrms with high volume fraction ranged 50∼71% were investigated to make metal matrix composites for possible applications as heat sinks in electronic packares. The SiC particle preforms with 50∼71vol% of reinforcement were fabricated by a new modified process named ball milling and pressing method. The SiC particle performs were fabricated by ball milling of SiC particles with single sized of 48${\mu}$m in diameter or two different size of 8${\mu}$m and 48${\mu}$min diameter, with collodal SiO2 as inorgnic binder in distilled water, and the mixed slurries were cold pressed for consolidation into final prefom. The compressive strengths og calcined SiC particle prefoms increased from 20MPa to 155MPa with increasing the content of inorganis binder, temperature and time for calcination. The increase of compressive strength of SiC particle bridge the interfaces of two neighboring SiC particles.

  • PDF