Browse > Article
http://dx.doi.org/10.4150/KPMI.2015.22.5.309

Synthesis and Characterization of Tungsten Trioxide Films Prepared by a Sol-Gel Method for Electrochromic Applications  

Kim, Tae-Ho (Interdisciplinary Program in Creative Engineering, School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
Nah, Yoon-Chae (Interdisciplinary Program in Creative Engineering, School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
Publication Information
Journal of Powder Materials / v.22, no.5, 2015 , pp. 309-314 More about this Journal
Abstract
Tungsten trioxide thin films are successfully synthesized by a sol-gel method using tungsten hexachloride as precursors. The structural, chemical, and optical properties of the prepared films are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-Vis spectrophotometry. The electrochemical and electrochromic properties of the films before and after heat treatment are also investigated by cyclic voltammetry, chronoamperometry, and in situ transmittance measurement system. Compared to as-prepared films, heat-treated tungsten trioxide thin films exhibit a higher electrochemical reversibility of 0.81 and superior coloration efficiency of $65.7cm^2/C$, which implies that heat treatment at an appropriate temperature is a crucial process in a sol-gel method for having a better electrochromic performance.
Keywords
Electrochromism; Tungsten trioxide; Sol-gel; Heat treatment; Coloration efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky: Electrochromism: Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim (2007) 22.
2 S. K. Deb: Sol. Energy Mater. Sol. Cells, 92 (2008) 245.   DOI
3 Y.-C. Nah, A. Ghicov, D. Kim and P. Schmuki: Electrochem. Commun., 10 (2008) 1777.   DOI
4 Y.-C. Nah: J. Nanosci. Nanotechnol., 13 (2013) 3270.   DOI
5 J. Zhu, S. Wei, L. Zhang, Y. Mao, J. Ryu, A. B. Karki, D. P. Young and Z. Guo: J. Mater. Chem., 21 (2011) 342.   DOI
6 A. Azens and C. Granqvist: J. Solid State Electrochem., 7 (2003) 64.   DOI
7 P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky: Electrochromism: Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim (2007) 42.
8 P. R. Somani and S. Radhakrishnan: Mater. Chem. Phys., 77 (2003) 117.   DOI
9 R. J. Mortimer, A. L. Dyer and J. R. Reynolds: Displays, 27 (2006) 2.   DOI
10 M. Seman and C. A. Wolden: Sol. Energy Mater. Sol. Cells, 82 (2004) 517.
11 T.-H. Kim, H. J. Jeon, J.-W. Lee and Y.-C. Nah: Elctrochem. Commun., 57 (2015) 65.   DOI
12 V. Keller and F. Garin: Catal. Commun., 4 (2003) 377.   DOI
13 M. Sun, N. Xu, Y. W. Cao, J. N. Yao and E.G. Wang: J. Mater. Sci. Lett., 19 (2000) 1407.   DOI
14 B. Reichman and A. J. Bard: J. Electrochem. Soc., 126 (1979) 583.   DOI
15 Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta and N. Nakatani: Sens. Actuators B, 128 (2007) 173.   DOI
16 T. Maruyama and S. Arai: J. Electrochem. Soc., 141 (1994) 1021.   DOI
17 L. Su, L. Zhang, J. Fang, M. Xu and Z. Lu: Sol. Energy Mater. Sol. Cells, 58 (1999) 133.   DOI
18 R. Solarska, B. Alexander and J. Augustynski: J. Solid State Electrochem., 8 (2004) 748.
19 L. E. Fraga and M. V. B. Zanoni: J. Braz. Chem. Soc., 22 (2011) 718.   DOI
20 M. Breedon, P. Spizzirri, M. Taylor, J. du Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski and K. Kalantar-Zadeh: Cryst. Growth Des., 10 (2010) 430.   DOI
21 S. R. Bath and P. S. Patil: Smart Mater. Struct., 18 (2009) 025004.   DOI
22 R. Vijayalakshmi, M. Jayachandran and C.Sanjeeviraja: Curr. Appl.Phys., 3 (2003)171.   DOI
23 Y.-C. Nah, W. S. Choi and D.-Y. Kim: Sol. Energy Mater. Sol. Cells, 92 (2008) 1547.   DOI
24 L. Meda, R. C. Breitkopf, T. E. Haas and R. U. Kirss: Thin Solid Films, 402 (2002) 126.   DOI
25 C. G. Granqvist: Electrochim. Acta, 44 (1999) 3005.   DOI