Al계 준결정 분말의 제조 및 응용

제3회 최신분말제품 응용기술 workshop 2002. 7. 20

W. T. Kim Chongju University

Acknowledgements to D.H. Kim, S.M. Lee, E.Fleury, H.S. Ahn* Center for Noncrystalline Materials, Yonsei Univ.,*KIST

(R)

Yonsei university

Chongju university

Contents of talk

1) Introduction

Quasicrystals?

General properties of quasicrystal

Potential application

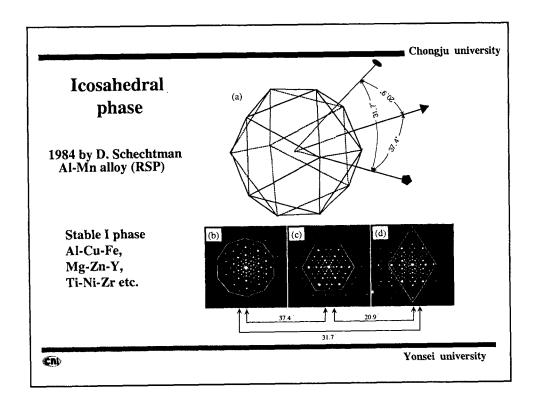
- 2) Preparation of Al-Cu-Fe powders
- 3) Thermal spray coating for thick film
- 4) Experimental

Thermal coating: APS, HVOF

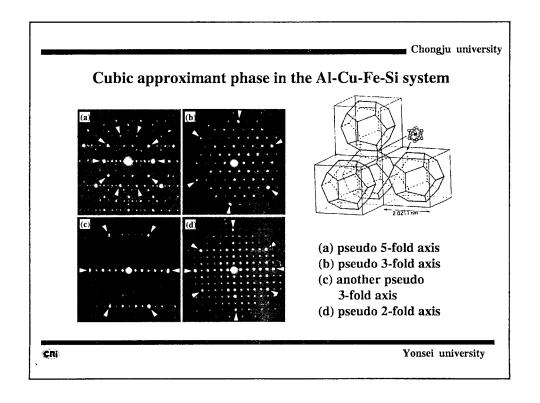
Tribological test

- 5) Results and discussion
- 6) Super-hard steel coating
- 7) Summary

ÇNİ


What is quasicrystals?

- Crystal: periodic sharp diffraction pattern showing
 2, 3, 4, or 6 rotation symmetry
 Periodic distribution of atoms translation & rotation order
- ➤ Quasicrystals: sharp diffraction pattern but with aperiodic distribution of diffraction spots with 5, 8, 10 or 12-fold rotation axis


Aperiodic distribution of atoms with rotation order

- ► Amorphous : diffuse halo pattern Random distribution of atoms
- •1991, International Union of Crystallography
 "crystal": any solid having an essentially discrete diffraction diagram

CND

Comparison of properties of Quasicrystals with others

		Density (g/cm ³)	Thermal conductivity (W/mK)	Thermal expansion (10 ⁻⁶ K ⁻¹)	Adhesion energy (mJ/m²)	Electrical resistivity (μΩcm)
Quasicrystals	Al-Cu-Fe	3.5-4.5	1.8	14-19	57-67	2500
	Al-Co-Fe-Cr	3.5-5.0	2.3-4.0	14-19	62-72	•
Metals	Al alloy	2.7	202-243	24	97.8	2.65
	Cu	9.0	387	17	105	1.7
	Steel	7.8	62-90	12-20	98	9.7
Ceramic	Al2O3	3.5-3.9	3.4-3.5	8.4	120	>100000
oxides	ZrO2 + 8%Y2O3	5.6-6.0	1.8-2.7	7-9	-	>10000

(10)

Yonsei university

Chongju university

Comparison of properties of Quasicrystals with others

		Young's modulus (GPa)	Fracture strength (MPa)	Elongation at rupture (%)	Micro- hardness (kg/mm²)	Coefficient of friction
Quasicrystals	Al-Cu-Fe	130-140	250-690	0.35-1.10	715-750	0.12
	Al-Cu-Fe-B	140	595-1010	0.65-0.85	670-850	0.15
Metals	Al alloy	72	325	15.0	87	0.37
	Copper	130	235	45	48	0.42
	Low carbon steel	205	620	32	120	0.32
Amorphous alloys	Al-Zr-Ni	80.4	800	1.4	340	-
	Al-Y-Ni	71.2	1140	1.6	300	-

Physical properties of Al-Cu-Fe icosahedral phase

Young's modulus : 61-110 Gpa Elongation at fracture : 0.35-1.1 % Microhardness Hv : 7.15 GPa Thermal conductivity : 1.8 W/mK

Thermal expansion coefficient: 14-19 x 10-6 K-1

Low friction coefficient : 0.05-0.4

High corrosion resistance Electro-optical property

Low surface energy : 24-25 mJ/m² Fracture toughness : 1 MPam^{1/2}

(R)

Yonsei university

Chongju university

Physical properties of the Al-Ni-Co(-Si) decagonal phase

✓ Young's modulus
 ✓ Elongation at fracture
 ✓ Microhardness Hv
 ✓ Thermal conductivity
 : 165 GPa
 : 0.9 %
 : 8.3 GPa
 ✓ 2-6 W/mK

✓ Thermal expansion coefficient: 14-19 x 10⁻⁶ K⁻¹

✓ Low surface energy✓ Low friction coefficient

✓ Good oxidation/corrosion resistance

✓ Electro-optical property

(n)

Potential application of I phase

► Structural application

Composite material consisting of ductile phase: ex-situ or in-situ

- ► High-strength Al alloys : Al with I precipitation
- ► Surgical tools, electric shavers : Maraging steel with I precipitation
- ► Mg alloy strengthened by I phase
- **▶** Functional application :

Thin film or thick film applications:

Thermal barrier coating (low thermal conductivity)

- **▶** Wear resistance coating (low friction coefficient)
 - ► Coating of powertrain tools
- ► Non-stick coating (low surface energy)
 - ► Cookware
 - ► Non-stick, wear resistant tire mold coatings
 - ► Injection molding cavity surface enhancements

Çnj

Yonsei university

Chongju university

Composites:

quasicrystalline particles + crystalline/amorphous matrix

Fabrication:

PM method: Al-Cu-Fe + alloy powder Casting: mixture of Al-Cu-Fe + alloy melt

→ But the microstructure is thermally unstable

Nano composites by solid state transformation or controlled cooling for specific alloys

→ But it needs consolidation process

In-situ composites by casting

ÇNİ

Advanced Al alloys using quasicrystalline particles*

High elevated temperature strength alloy: Al-Fe-Cr-Ti system.

Hot extrusion of gas atomized powder

: 400 nm sized I-phase and 500 nm sized Al grain.

 $\sigma_{\rm F} = 400-460 \text{ MPa}$ at 473 K

 $\sigma_F = 350-360 \text{ MPa}$ at 573 K.

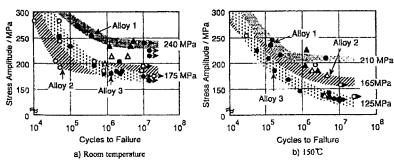
Excellent thermal stability: 200 h at 573 K

Ductile Al alloys: Al-Cr-Ce-Co alloys
Hot extrusion of gas atomized powder

: I-phase + Al

 $\sigma_{\rm f}$ = 500-600 MPa with 12-30 % of plastic elongation

Composites is a route to solve brittleness problem of I-phase

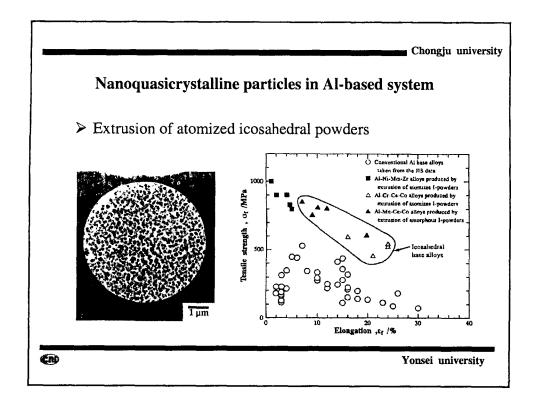

* A. Inoue, Progress in Materials Science, 43(1998), 365

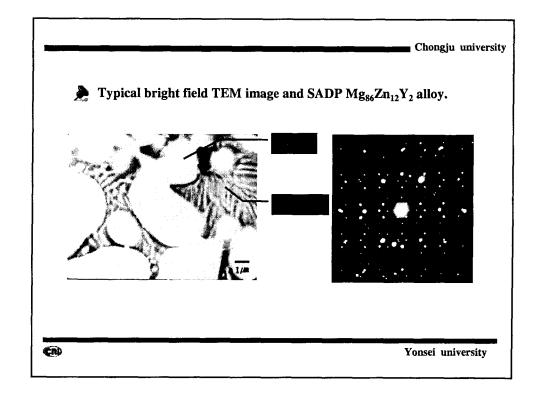
CRI

Yonsei university

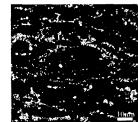
Chongju university

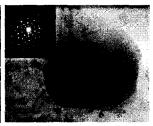
Nanoquasicrystalline particles in Al-based system



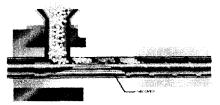

Fatigue testing results—S-N curves (O: normal fracture; △: fretting fracture).

Alloy 1: Al-4.35Cr-2.96Co-4.68Mn-3.06Zr (α_{Ai} +QC) Alloy 2: Al-4.35Cr-2.96Co-4.68Mn-3.06Zr + 5% SiC


Alloy 3 : Al-11.8Si-4.22Cu-0.63Mg


Çni

Mg-Zn-Y alloys in-situ composites


Alloy	Grain size µm	Vol. fraction of 2 nd phase	Yield Stress (s _{0.2}), MPa	UTS, MPa	Elongation %
AZ31	17.6		152	275	22.0
AZ61	9.9		175	320	19.8
AZ91	13.4		225	395	18.2
Mg ₉₆ Zn _{3.4} Y _{0.6}	7.8	0.08	210	355	23.4
Mg ₉₅ Zn _{4.3} Y _{0.7}	7.7	0.09	220	370	19.7
Mg _{94.8} Zn _{4.3} Y _{0.7} Zr _{0.2}	7.8	0.09	180	325	23.5

(n)

Structural	Functional
Dispersion of fine icosahedral phase in Al solid solution in Al-Li-Cu-Mg alloy (Sainfort et al., 1987)	Non-sticking quasicrystalline coatings (Dubois et al., 1991) commercial cookware
Precipitation of icosahedral structure in maraging steel (Nilson et al., 1998 Sandvik Steel) commercial maraging steel used in razor blade and surgical tools	Selective light absorber (Eisenhammer et al., 1994)
High strength Al-based alloy reinforced by nano-quasicrystalline phase (Inoue et al., 1999)	Hydrogen storage in Ti-ZrNi icosahedral quasicrystal (Kelton et al., 1997)
Polymer composite reinforced by Al-Cu-Fe quasicrystalline particles for biomedical applications (Sheares, 1999)	Thermoelectric power generation (Cyrot-Lackmann, 1997)
Quasicrystalline particles as strengthening phase in Mg-Zn-Y alloys (Kim et al., 2000)	Quasicrystals as precursor of catalyst (methanol steam reforming) (Tsai et al., 2001)

Potential applications of QC coatings

➤ Plastic injection machinery: barrel and mold: low friction, no-sticking and wear properties,

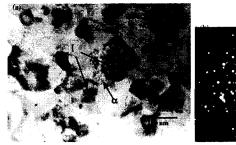
- > Blades in paper industry and in printer: low friction, nosticking and wear properties,
- ➤ Metallic tubes currently used in power plant, chemical plant, petroleum plant and maritime applications to insulate and/or to protect against oxidation/corrosion.

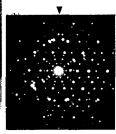
Yonsei university

Chongju university

Powder making

- ► Casting and crushing
- **▶** Gas atomization
- ▶ Mechanical alloying


Quasicrystal formation by MA/ heat treatment


Al-Cu-Fe system : stable I phase


Ti-Zr-Ni system: stable I-phase up to around 838 K.

CRI

TEM of the bulk $\rm Ti_{41.5}Zr_{41.5}Ni_{17}sample,$ annealed at 807 K $\,$ for 15 hrs

Formation of nanocomposites consisting of I-phase+ α phases.

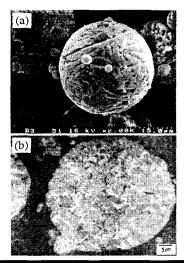
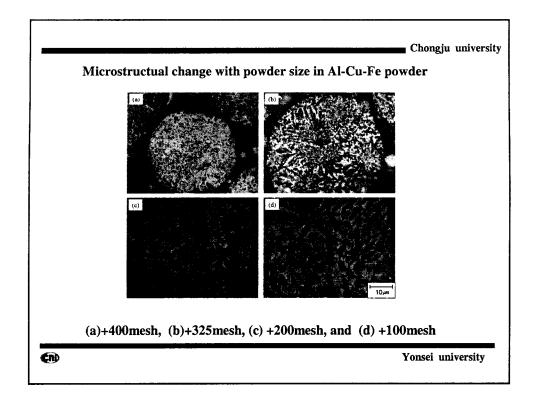
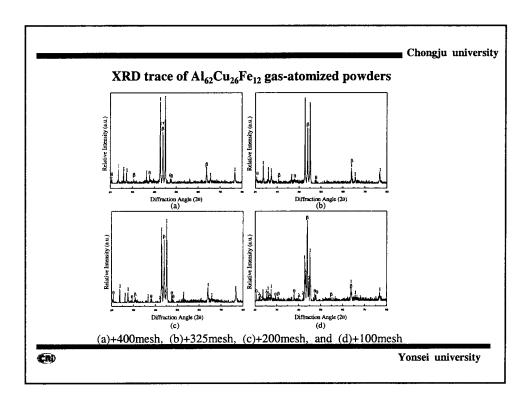
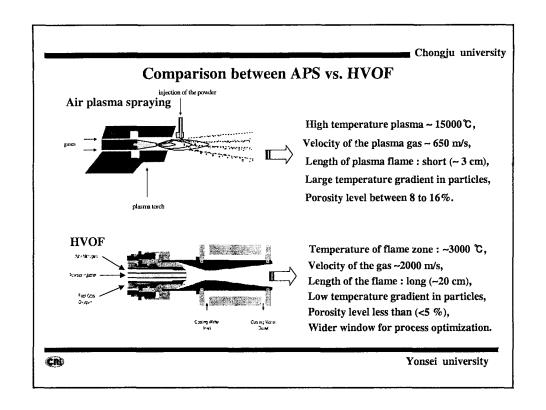
The bulk specimen shows microhardness around 6.2 GPa and much more ductile characteristics than the single I-phase sample.

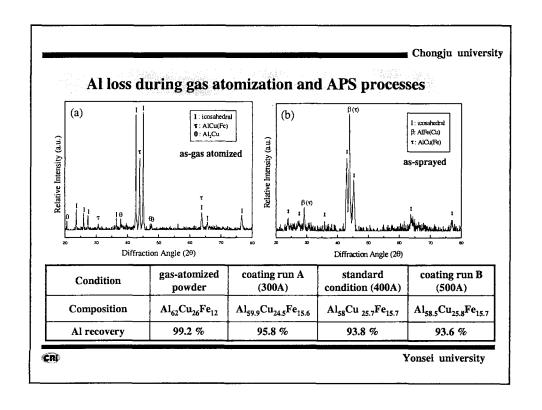
Cni

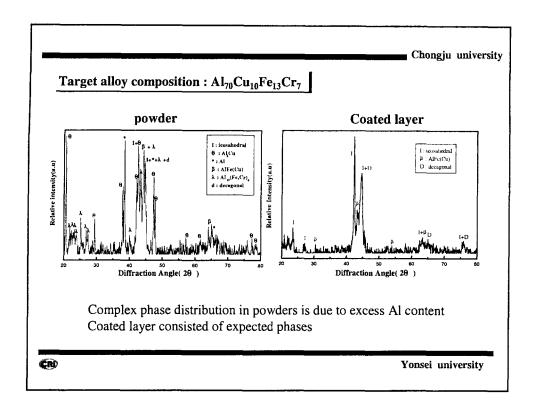
Yonsei university

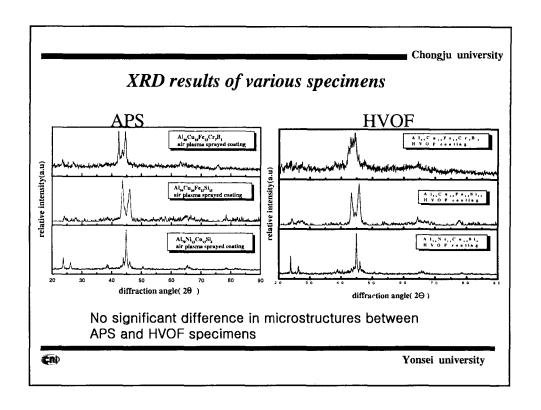
Chongju university

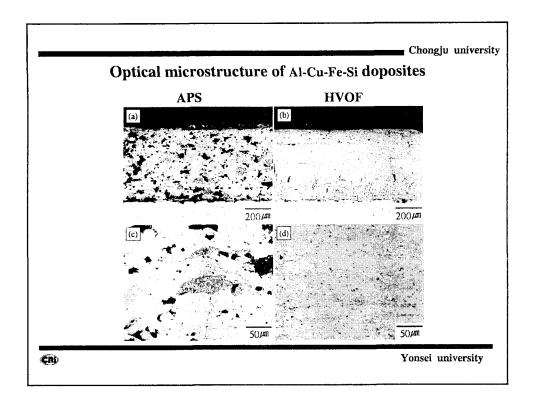
Gas atomization


Fig. Gas atomized Al-Ni-Co-Si powder


Cni





Comparison of microstructure in APS and HVOF coatings

APS

Partially melted particles:

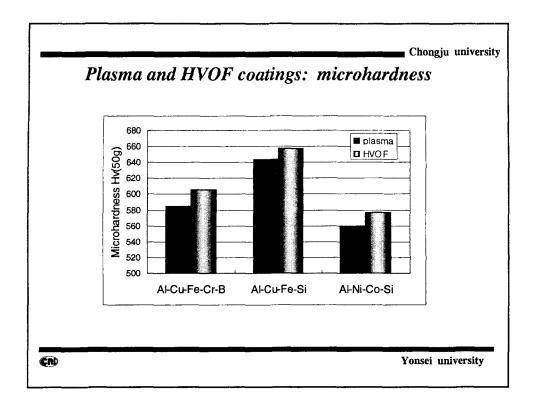
- large temperature gradient in powder
- different particle trajectories owing to the particle injection perpendicular to the plasma flame.

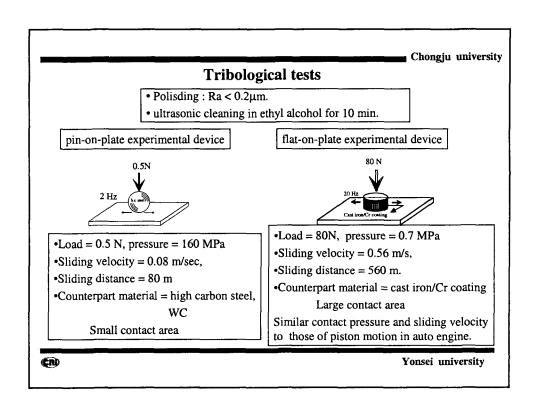
Porosity level: between 10 to

15 %.

Suitable for thermal barrier coating

HVOF


- Low porosity level in coatings due to high particle velocity,
- -small temperature gradient in particle due to long flame zone.


Porosity level: between 2 to 4 %

Suitable for wear resistance

application

Cni

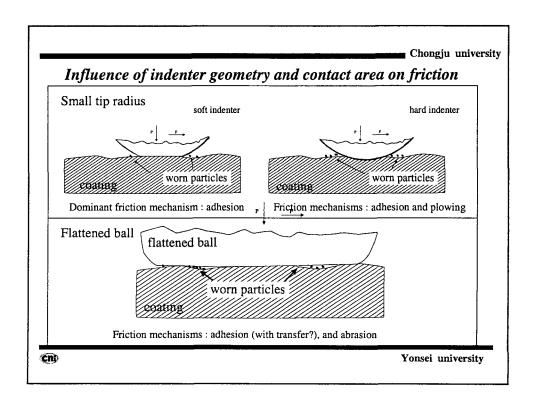
Why friction coefficient is so different?

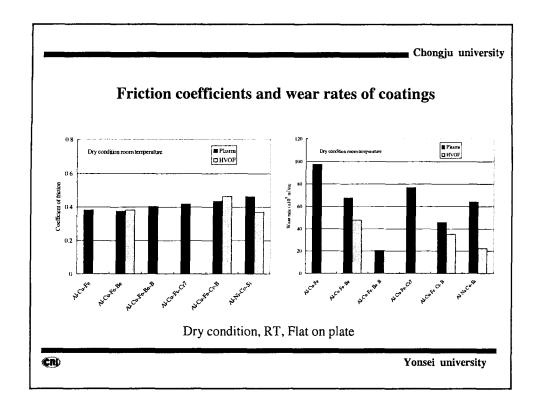
Scratch test:

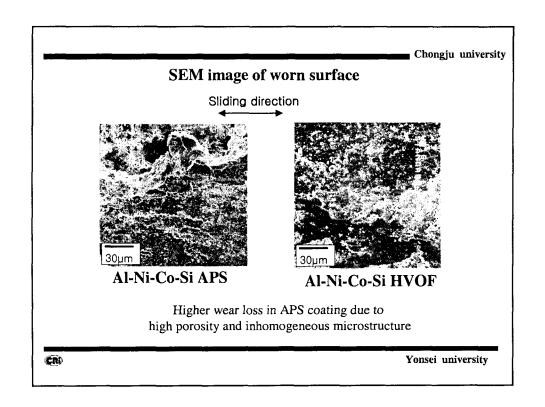
- . ~ 0.22 (Al-Cu-Fe deposit)
- . ~ 0.19 (Al-Cu-Fe-Cr-Si deposit)
- ~ 0.05 (Al-Cu-Fe against diamond)
- ~ 0.15 (Al-Cu-Fe against WC)

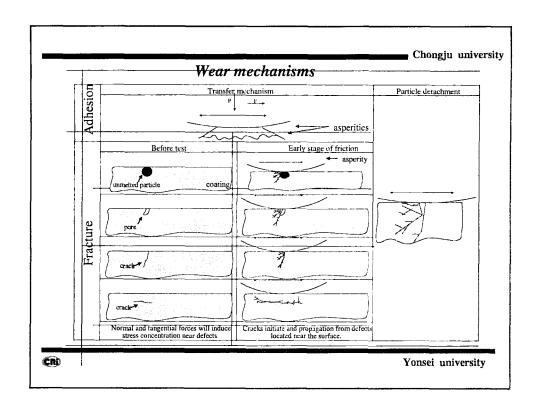
Pin on disk: steel ball Ø 6.3 mm

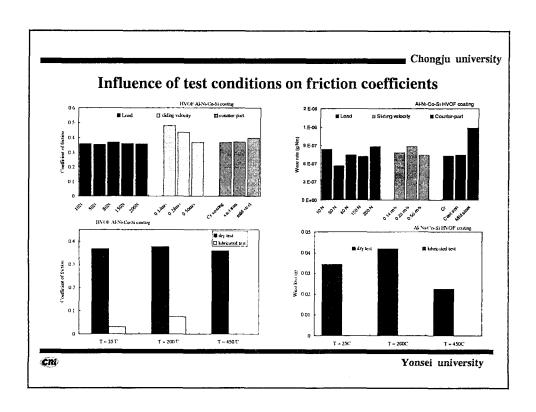
. ~ 0.15 (Al-Cu-Fe ingot) 0.1-0.15 (Al-Cu-Fe-X deposit)

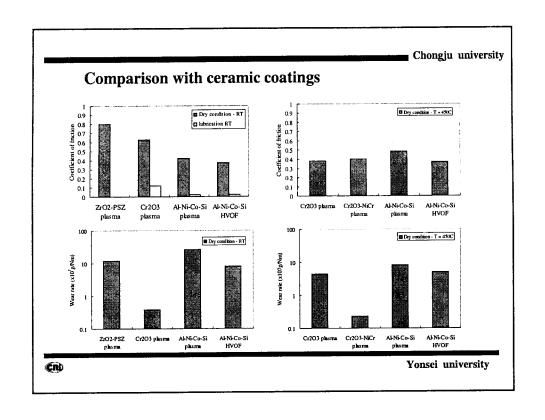

Pin on disk: flattened ball 0.2-0.35 (Al-Cu-Fe-X deposit)

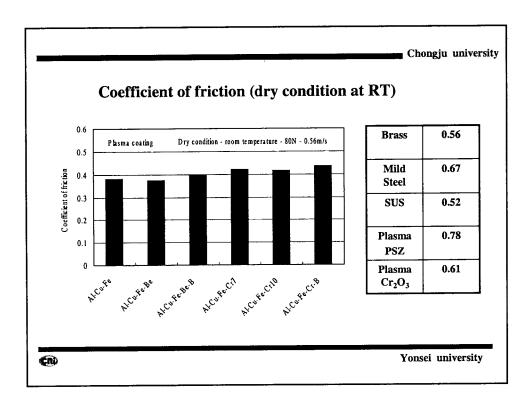

Flat on disk: flat Ø 8 mm 0.35-0.45 (Al-Cu-Fe-X deposit) The variation of friction coefficient is sensitive to contact area:

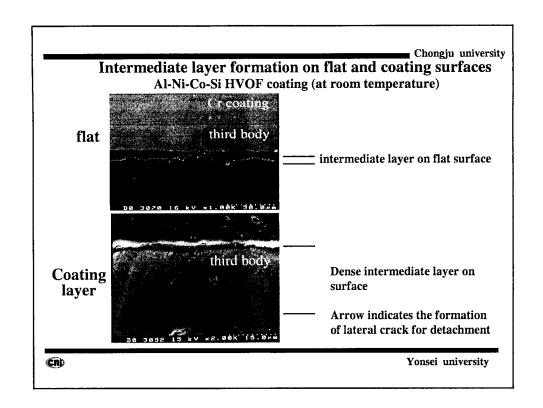

Large contact area is favorable for formation of stable intermediate layer,

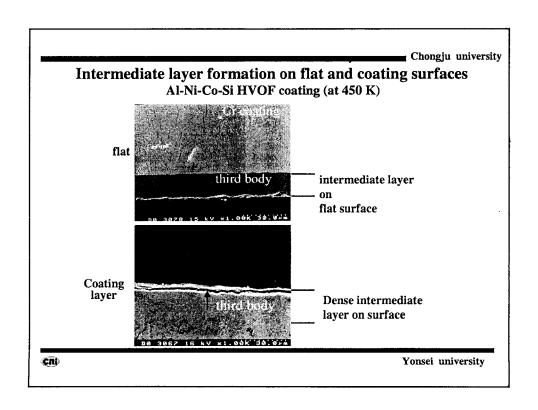

Friction coefficient between two intermediate layers are measured











Chongju university

Evolution of the contact surface after friction tests

APS coatings of Al-Cu-Fe-Cr-B and Al-Ni-Co-Si alloys

(a)

(b)

Cast iron

Cr coating

Counterpart disc

Transfer film

Pore-free region

Al-Cu-Fe-Cr-B

coating

(c)

Al-Ni-Co-Si coating

Yonsei university

Chongju university

Amorphous powder coating

Amorphous structure: homogeneous, wear and corrosion resistance

Precursor to nanostructure: suitable heat treatment

Armacor powder (LMT)

Fe-Cr-B-Ni-Mo powder coating

Glass coating by twin wire arc spraying

HVOF spraying: glass fraction is very low

Super-hard steel coating (DOE's INEEL)

Fe based amorphous coating

A tough, low cost, wear and corrosion resistant coating

Hardness: up to 16 GPa

one of top 100 technologies (2001)

Cni

Summary

- 1. Quasicrystalline powders shows exotic physical and mechanical properties
- 2. Applications: structural application: strengthening particles for composites Coating application: wear resistance, low friction coefficient
- 3. For thermal spaying: material loss during process should be considered to control chemical composition of deposit
- 4. Friction coefficient is strongly dependent on contact geometry Friction coefficient from pin on plate: 0.1-0.2 Friction coefficient from flat on plate: about 0.46.
- 5. Quasicrystalline materials show lower friction coefficient but higher wear rate than corresponding values of Cr₂O₃ coated layer.
- 6. Amorphous coating seems to be promising

